Description: The continuous functionals of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hhcn.1 | |
|
hhcn.2 | |
||
hhcn.4 | |
||
Assertion | hhcnf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhcn.1 | |
|
2 | hhcn.2 | |
|
3 | hhcn.4 | |
|
4 | df-rab | |
|
5 | df-cnfn | |
|
6 | 1 | hilmetdval | |
7 | normsub | |
|
8 | 6 7 | eqtrd | |
9 | 8 | adantll | |
10 | 9 | breq1d | |
11 | ffvelcdm | |
|
12 | ffvelcdm | |
|
13 | 11 12 | anim12dan | |
14 | eqid | |
|
15 | 14 | cnmetdval | |
16 | abssub | |
|
17 | 15 16 | eqtrd | |
18 | 13 17 | syl | |
19 | 18 | anassrs | |
20 | 19 | breq1d | |
21 | 10 20 | imbi12d | |
22 | 21 | ralbidva | |
23 | 22 | rexbidv | |
24 | 23 | ralbidv | |
25 | 24 | ralbidva | |
26 | 25 | pm5.32i | |
27 | 1 | hilxmet | |
28 | cnxmet | |
|
29 | 3 | cnfldtopn | |
30 | 2 29 | metcn | |
31 | 27 28 30 | mp2an | |
32 | cnex | |
|
33 | ax-hilex | |
|
34 | 32 33 | elmap | |
35 | 34 | anbi1i | |
36 | 26 31 35 | 3bitr4i | |
37 | 36 | eqabi | |
38 | 4 5 37 | 3eqtr4i | |