Metamath Proof Explorer


Theorem normsub

Description: Swapping order of subtraction doesn't change the norm of a vector. (Contributed by NM, 14-Aug-1999) (New usage is discouraged.)

Ref Expression
Assertion normsub ABnormA-B=normB-A

Proof

Step Hyp Ref Expression
1 fvoveq1 A=ifAA0normA-B=normifAA0-B
2 oveq2 A=ifAA0B-A=B-ifAA0
3 2 fveq2d A=ifAA0normB-A=normB-ifAA0
4 1 3 eqeq12d A=ifAA0normA-B=normB-AnormifAA0-B=normB-ifAA0
5 oveq2 B=ifBB0ifAA0-B=ifAA0-ifBB0
6 5 fveq2d B=ifBB0normifAA0-B=normifAA0-ifBB0
7 fvoveq1 B=ifBB0normB-ifAA0=normifBB0-ifAA0
8 6 7 eqeq12d B=ifBB0normifAA0-B=normB-ifAA0normifAA0-ifBB0=normifBB0-ifAA0
9 ifhvhv0 ifAA0
10 ifhvhv0 ifBB0
11 9 10 normsubi normifAA0-ifBB0=normifBB0-ifAA0
12 4 8 11 dedth2h ABnormA-B=normB-A