Metamath Proof Explorer


Theorem normneg

Description: The norm of a vector equals the norm of its negative. (Contributed by NM, 23-May-2005) (New usage is discouraged.)

Ref Expression
Assertion normneg Anorm-1A=normA

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0
2 normsub 0Anorm0-A=normA-0
3 1 2 mpan Anorm0-A=normA-0
4 hv2neg A0-A=-1A
5 4 fveq2d Anorm0-A=norm-1A
6 hvsub0 AA-0=A
7 6 fveq2d AnormA-0=normA
8 3 5 7 3eqtr3d Anorm-1A=normA