Metamath Proof Explorer


Theorem hvsub0

Description: Subtraction of a zero vector. (Contributed by NM, 2-Apr-2000) (New usage is discouraged.)

Ref Expression
Assertion hvsub0 AA-0=A

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0
2 hvsubval A0A-0=A+-10
3 1 2 mpan2 AA-0=A+-10
4 neg1cn 1
5 hvmul0 1-10=0
6 4 5 ax-mp -10=0
7 6 oveq2i A+-10=A+0
8 3 7 eqtrdi AA-0=A+0
9 ax-hvaddid AA+0=A
10 8 9 eqtrd AA-0=A