Description: Analogy to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of Beran p. 98. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | normpyth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 | |
|
2 | 1 | eqeq1d | |
3 | fvoveq1 | |
|
4 | 3 | oveq1d | |
5 | fveq2 | |
|
6 | 5 | oveq1d | |
7 | 6 | oveq1d | |
8 | 4 7 | eqeq12d | |
9 | 2 8 | imbi12d | |
10 | oveq2 | |
|
11 | 10 | eqeq1d | |
12 | oveq2 | |
|
13 | 12 | fveq2d | |
14 | 13 | oveq1d | |
15 | fveq2 | |
|
16 | 15 | oveq1d | |
17 | 16 | oveq2d | |
18 | 14 17 | eqeq12d | |
19 | 11 18 | imbi12d | |
20 | ifhvhv0 | |
|
21 | ifhvhv0 | |
|
22 | 20 21 | normpythi | |
23 | 9 19 22 | dedth2h | |