Metamath Proof Explorer


Theorem normpyth

Description: Analogy to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of Beran p. 98. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion normpyth ABAihB=0normA+B2=normA2+normB2

Proof

Step Hyp Ref Expression
1 oveq1 A=ifAA0AihB=ifAA0ihB
2 1 eqeq1d A=ifAA0AihB=0ifAA0ihB=0
3 fvoveq1 A=ifAA0normA+B=normifAA0+B
4 3 oveq1d A=ifAA0normA+B2=normifAA0+B2
5 fveq2 A=ifAA0normA=normifAA0
6 5 oveq1d A=ifAA0normA2=normifAA02
7 6 oveq1d A=ifAA0normA2+normB2=normifAA02+normB2
8 4 7 eqeq12d A=ifAA0normA+B2=normA2+normB2normifAA0+B2=normifAA02+normB2
9 2 8 imbi12d A=ifAA0AihB=0normA+B2=normA2+normB2ifAA0ihB=0normifAA0+B2=normifAA02+normB2
10 oveq2 B=ifBB0ifAA0ihB=ifAA0ihifBB0
11 10 eqeq1d B=ifBB0ifAA0ihB=0ifAA0ihifBB0=0
12 oveq2 B=ifBB0ifAA0+B=ifAA0+ifBB0
13 12 fveq2d B=ifBB0normifAA0+B=normifAA0+ifBB0
14 13 oveq1d B=ifBB0normifAA0+B2=normifAA0+ifBB02
15 fveq2 B=ifBB0normB=normifBB0
16 15 oveq1d B=ifBB0normB2=normifBB02
17 16 oveq2d B=ifBB0normifAA02+normB2=normifAA02+normifBB02
18 14 17 eqeq12d B=ifBB0normifAA0+B2=normifAA02+normB2normifAA0+ifBB02=normifAA02+normifBB02
19 11 18 imbi12d B=ifBB0ifAA0ihB=0normifAA0+B2=normifAA02+normB2ifAA0ihifBB0=0normifAA0+ifBB02=normifAA02+normifBB02
20 ifhvhv0 ifAA0
21 ifhvhv0 ifBB0
22 20 21 normpythi ifAA0ihifBB0=0normifAA0+ifBB02=normifAA02+normifBB02
23 9 19 22 dedth2h ABAihB=0normA+B2=normA2+normB2