Metamath Proof Explorer


Theorem normpyc

Description: Corollary to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of Beran p. 98. (Contributed by NM, 26-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion normpyc ABAihB=0normAnormA+B

Proof

Step Hyp Ref Expression
1 normcl AnormA
2 1 resqcld AnormA2
3 2 recnd AnormA2
4 3 addridd AnormA2+0=normA2
5 4 adantr ABnormA2+0=normA2
6 normcl BnormB
7 6 sqge0d B0normB2
8 7 adantl AB0normB2
9 6 resqcld BnormB2
10 0re 0
11 leadd2 0normB2normA20normB2normA2+0normA2+normB2
12 10 11 mp3an1 normB2normA20normB2normA2+0normA2+normB2
13 9 2 12 syl2anr AB0normB2normA2+0normA2+normB2
14 8 13 mpbid ABnormA2+0normA2+normB2
15 5 14 eqbrtrrd ABnormA2normA2+normB2
16 15 adantr ABAihB=0normA2normA2+normB2
17 normpyth ABAihB=0normA+B2=normA2+normB2
18 17 imp ABAihB=0normA+B2=normA2+normB2
19 16 18 breqtrrd ABAihB=0normA2normA+B2
20 19 ex ABAihB=0normA2normA+B2
21 1 adantr ABnormA
22 hvaddcl ABA+B
23 normcl A+BnormA+B
24 22 23 syl ABnormA+B
25 normge0 A0normA
26 25 adantr AB0normA
27 normge0 A+B0normA+B
28 22 27 syl AB0normA+B
29 21 24 26 28 le2sqd ABnormAnormA+BnormA2normA+B2
30 20 29 sylibrd ABAihB=0normAnormA+B