Description: Corollary to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of Beran p. 98. (Contributed by NM, 26-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | normpyc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normcl | |
|
2 | 1 | resqcld | |
3 | 2 | recnd | |
4 | 3 | addridd | |
5 | 4 | adantr | |
6 | normcl | |
|
7 | 6 | sqge0d | |
8 | 7 | adantl | |
9 | 6 | resqcld | |
10 | 0re | |
|
11 | leadd2 | |
|
12 | 10 11 | mp3an1 | |
13 | 9 2 12 | syl2anr | |
14 | 8 13 | mpbid | |
15 | 5 14 | eqbrtrrd | |
16 | 15 | adantr | |
17 | normpyth | |
|
18 | 17 | imp | |
19 | 16 18 | breqtrrd | |
20 | 19 | ex | |
21 | 1 | adantr | |
22 | hvaddcl | |
|
23 | normcl | |
|
24 | 22 23 | syl | |
25 | normge0 | |
|
26 | 25 | adantr | |
27 | normge0 | |
|
28 | 22 27 | syl | |
29 | 21 24 26 28 | le2sqd | |
30 | 20 29 | sylibrd | |