Step |
Hyp |
Ref |
Expression |
1 |
|
normcl |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
2 |
1
|
resqcld |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
3 |
2
|
recnd |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
4 |
3
|
addid1d |
⊢ ( 𝐴 ∈ ℋ → ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + 0 ) = ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + 0 ) = ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) |
6 |
|
normcl |
⊢ ( 𝐵 ∈ ℋ → ( normℎ ‘ 𝐵 ) ∈ ℝ ) |
7 |
6
|
sqge0d |
⊢ ( 𝐵 ∈ ℋ → 0 ≤ ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → 0 ≤ ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) |
9 |
6
|
resqcld |
⊢ ( 𝐵 ∈ ℋ → ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ∈ ℝ ) |
10 |
|
0re |
⊢ 0 ∈ ℝ |
11 |
|
leadd2 |
⊢ ( ( 0 ∈ ℝ ∧ ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ∈ ℝ ∧ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) → ( 0 ≤ ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ↔ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + 0 ) ≤ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) ) |
12 |
10 11
|
mp3an1 |
⊢ ( ( ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ∈ ℝ ∧ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) → ( 0 ≤ ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ↔ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + 0 ) ≤ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) ) |
13 |
9 2 12
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 0 ≤ ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ↔ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + 0 ) ≤ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) ) |
14 |
8 13
|
mpbid |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + 0 ) ≤ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) |
15 |
5 14
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ih 𝐵 ) = 0 ) → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) |
17 |
|
normpyth |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = 0 → ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) = ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) ) |
18 |
17
|
imp |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ih 𝐵 ) = 0 ) → ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) = ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) |
19 |
16 18
|
breqtrrd |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ih 𝐵 ) = 0 ) → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) ) |
20 |
19
|
ex |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = 0 → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) ) ) |
21 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
22 |
|
hvaddcl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) |
23 |
|
normcl |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ ℋ → ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ ℝ ) |
24 |
22 23
|
syl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ ℝ ) |
25 |
|
normge0 |
⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐴 ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → 0 ≤ ( normℎ ‘ 𝐴 ) ) |
27 |
|
normge0 |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ) |
28 |
22 27
|
syl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → 0 ≤ ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ) |
29 |
21 24 26 28
|
le2sqd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( normℎ ‘ 𝐴 ) ≤ ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↔ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) ) ) |
30 |
20 29
|
sylibrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = 0 → ( normℎ ‘ 𝐴 ) ≤ ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ) ) |