| Step |
Hyp |
Ref |
Expression |
| 1 |
|
normcl |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
| 2 |
1
|
resqcld |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 3 |
2
|
recnd |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 4 |
3
|
addridd |
⊢ ( 𝐴 ∈ ℋ → ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + 0 ) = ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + 0 ) = ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) |
| 6 |
|
normcl |
⊢ ( 𝐵 ∈ ℋ → ( normℎ ‘ 𝐵 ) ∈ ℝ ) |
| 7 |
6
|
sqge0d |
⊢ ( 𝐵 ∈ ℋ → 0 ≤ ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → 0 ≤ ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) |
| 9 |
6
|
resqcld |
⊢ ( 𝐵 ∈ ℋ → ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ∈ ℝ ) |
| 10 |
|
0re |
⊢ 0 ∈ ℝ |
| 11 |
|
leadd2 |
⊢ ( ( 0 ∈ ℝ ∧ ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ∈ ℝ ∧ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) → ( 0 ≤ ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ↔ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + 0 ) ≤ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| 12 |
10 11
|
mp3an1 |
⊢ ( ( ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ∈ ℝ ∧ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) → ( 0 ≤ ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ↔ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + 0 ) ≤ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| 13 |
9 2 12
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 0 ≤ ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ↔ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + 0 ) ≤ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| 14 |
8 13
|
mpbid |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + 0 ) ≤ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) |
| 15 |
5 14
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ih 𝐵 ) = 0 ) → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) |
| 17 |
|
normpyth |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = 0 → ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) = ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| 18 |
17
|
imp |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ih 𝐵 ) = 0 ) → ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) = ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) |
| 19 |
16 18
|
breqtrrd |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐴 ·ih 𝐵 ) = 0 ) → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) ) |
| 20 |
19
|
ex |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = 0 → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) ) ) |
| 21 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
| 22 |
|
hvaddcl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) |
| 23 |
|
normcl |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ ℋ → ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ ℝ ) |
| 24 |
22 23
|
syl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ∈ ℝ ) |
| 25 |
|
normge0 |
⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐴 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → 0 ≤ ( normℎ ‘ 𝐴 ) ) |
| 27 |
|
normge0 |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ) |
| 28 |
22 27
|
syl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → 0 ≤ ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ) |
| 29 |
21 24 26 28
|
le2sqd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( normℎ ‘ 𝐴 ) ≤ ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↔ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) ) ) |
| 30 |
20 29
|
sylibrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = 0 → ( normℎ ‘ 𝐴 ) ≤ ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ) ) |