Metamath Proof Explorer


Theorem metcn

Description: Two ways to say a mapping from metric C to metric D is continuous. Theorem 10.1 of Munkres p. 127. The second biconditional argument says that for every positive "epsilon" y there is a positive "delta" z such that a distance less than delta in C maps to a distance less than epsilon in D . (Contributed by NM, 15-May-2007) (Revised by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses metcn.2 J=MetOpenC
metcn.4 K=MetOpenD
Assertion metcn C∞MetXD∞MetYFJCnKF:XYxXy+z+wXxCw<zFxDFw<y

Proof

Step Hyp Ref Expression
1 metcn.2 J=MetOpenC
2 metcn.4 K=MetOpenD
3 1 mopntopon C∞MetXJTopOnX
4 2 mopntopon D∞MetYKTopOnY
5 cncnp JTopOnXKTopOnYFJCnKF:XYxXFJCnPKx
6 3 4 5 syl2an C∞MetXD∞MetYFJCnKF:XYxXFJCnPKx
7 simplr C∞MetXD∞MetYF:XYxXF:XY
8 1 2 metcnp C∞MetXD∞MetYxXFJCnPKxF:XYy+z+wXxCw<zFxDFw<y
9 8 ad4ant124 C∞MetXD∞MetYF:XYxXFJCnPKxF:XYy+z+wXxCw<zFxDFw<y
10 7 9 mpbirand C∞MetXD∞MetYF:XYxXFJCnPKxy+z+wXxCw<zFxDFw<y
11 10 ralbidva C∞MetXD∞MetYF:XYxXFJCnPKxxXy+z+wXxCw<zFxDFw<y
12 11 pm5.32da C∞MetXD∞MetYF:XYxXFJCnPKxF:XYxXy+z+wXxCw<zFxDFw<y
13 6 12 bitrd C∞MetXD∞MetYFJCnKF:XYxXy+z+wXxCw<zFxDFw<y