Metamath Proof Explorer


Theorem cncnp

Description: A continuous function is continuous at all points. Theorem 7.2(g) of Munkres p. 107. (Contributed by NM, 15-May-2007) (Proof shortened by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion cncnp JTopOnXKTopOnYFJCnKF:XYxXFJCnPKx

Proof

Step Hyp Ref Expression
1 iscn JTopOnXKTopOnYFJCnKF:XYyKF-1yJ
2 1 simprbda JTopOnXKTopOnYFJCnKF:XY
3 eqid J=J
4 3 cncnpi FJCnKxJFJCnPKx
5 4 ralrimiva FJCnKxJFJCnPKx
6 5 adantl JTopOnXKTopOnYFJCnKxJFJCnPKx
7 toponuni JTopOnXX=J
8 7 ad2antrr JTopOnXKTopOnYFJCnKX=J
9 8 raleqdv JTopOnXKTopOnYFJCnKxXFJCnPKxxJFJCnPKx
10 6 9 mpbird JTopOnXKTopOnYFJCnKxXFJCnPKx
11 2 10 jca JTopOnXKTopOnYFJCnKF:XYxXFJCnPKx
12 simprl JTopOnXKTopOnYF:XYxXFJCnPKxF:XY
13 cnvimass F-1ydomF
14 fdm F:XYdomF=X
15 14 adantl JTopOnXKTopOnYyKF:XYdomF=X
16 13 15 sseqtrid JTopOnXKTopOnYyKF:XYF-1yX
17 ssralv F-1yXxXFJCnPKxxF-1yFJCnPKx
18 16 17 syl JTopOnXKTopOnYyKF:XYxXFJCnPKxxF-1yFJCnPKx
19 simprr JTopOnXKTopOnYyKF:XYxF-1yFJCnPKxFJCnPKx
20 simpllr JTopOnXKTopOnYyKF:XYxF-1yFJCnPKxyK
21 ffn F:XYFFnX
22 21 ad2antlr JTopOnXKTopOnYyKF:XYxF-1yFJCnPKxFFnX
23 simprl JTopOnXKTopOnYyKF:XYxF-1yFJCnPKxxF-1y
24 elpreima FFnXxF-1yxXFxy
25 24 simplbda FFnXxF-1yFxy
26 22 23 25 syl2anc JTopOnXKTopOnYyKF:XYxF-1yFJCnPKxFxy
27 cnpimaex FJCnPKxyKFxyuJxuFuy
28 19 20 26 27 syl3anc JTopOnXKTopOnYyKF:XYxF-1yFJCnPKxuJxuFuy
29 simpllr JTopOnXKTopOnYyKF:XYxF-1yFJCnPKxuJF:XY
30 29 ffund JTopOnXKTopOnYyKF:XYxF-1yFJCnPKxuJFunF
31 simp-4l JTopOnXKTopOnYyKF:XYxF-1yFJCnPKxJTopOnX
32 toponss JTopOnXuJuX
33 31 32 sylan JTopOnXKTopOnYyKF:XYxF-1yFJCnPKxuJuX
34 29 14 syl JTopOnXKTopOnYyKF:XYxF-1yFJCnPKxuJdomF=X
35 33 34 sseqtrrd JTopOnXKTopOnYyKF:XYxF-1yFJCnPKxuJudomF
36 funimass3 FunFudomFFuyuF-1y
37 30 35 36 syl2anc JTopOnXKTopOnYyKF:XYxF-1yFJCnPKxuJFuyuF-1y
38 37 anbi2d JTopOnXKTopOnYyKF:XYxF-1yFJCnPKxuJxuFuyxuuF-1y
39 38 rexbidva JTopOnXKTopOnYyKF:XYxF-1yFJCnPKxuJxuFuyuJxuuF-1y
40 28 39 mpbid JTopOnXKTopOnYyKF:XYxF-1yFJCnPKxuJxuuF-1y
41 40 expr JTopOnXKTopOnYyKF:XYxF-1yFJCnPKxuJxuuF-1y
42 41 ralimdva JTopOnXKTopOnYyKF:XYxF-1yFJCnPKxxF-1yuJxuuF-1y
43 18 42 syld JTopOnXKTopOnYyKF:XYxXFJCnPKxxF-1yuJxuuF-1y
44 43 impr JTopOnXKTopOnYyKF:XYxXFJCnPKxxF-1yuJxuuF-1y
45 44 an32s JTopOnXKTopOnYF:XYxXFJCnPKxyKxF-1yuJxuuF-1y
46 topontop JTopOnXJTop
47 46 ad3antrrr JTopOnXKTopOnYF:XYxXFJCnPKxyKJTop
48 eltop2 JTopF-1yJxF-1yuJxuuF-1y
49 47 48 syl JTopOnXKTopOnYF:XYxXFJCnPKxyKF-1yJxF-1yuJxuuF-1y
50 45 49 mpbird JTopOnXKTopOnYF:XYxXFJCnPKxyKF-1yJ
51 50 ralrimiva JTopOnXKTopOnYF:XYxXFJCnPKxyKF-1yJ
52 1 adantr JTopOnXKTopOnYF:XYxXFJCnPKxFJCnKF:XYyKF-1yJ
53 12 51 52 mpbir2and JTopOnXKTopOnYF:XYxXFJCnPKxFJCnK
54 11 53 impbida JTopOnXKTopOnYFJCnKF:XYxXFJCnPKx