Description: A continuous function is continuous at all points. Theorem 7.2(g) of Munkres p. 107. (Contributed by NM, 15-May-2007) (Proof shortened by Mario Carneiro, 21-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | cncnp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscn | |
|
2 | 1 | simprbda | |
3 | eqid | |
|
4 | 3 | cncnpi | |
5 | 4 | ralrimiva | |
6 | 5 | adantl | |
7 | toponuni | |
|
8 | 7 | ad2antrr | |
9 | 8 | raleqdv | |
10 | 6 9 | mpbird | |
11 | 2 10 | jca | |
12 | simprl | |
|
13 | cnvimass | |
|
14 | fdm | |
|
15 | 14 | adantl | |
16 | 13 15 | sseqtrid | |
17 | ssralv | |
|
18 | 16 17 | syl | |
19 | simprr | |
|
20 | simpllr | |
|
21 | ffn | |
|
22 | 21 | ad2antlr | |
23 | simprl | |
|
24 | elpreima | |
|
25 | 24 | simplbda | |
26 | 22 23 25 | syl2anc | |
27 | cnpimaex | |
|
28 | 19 20 26 27 | syl3anc | |
29 | simpllr | |
|
30 | 29 | ffund | |
31 | simp-4l | |
|
32 | toponss | |
|
33 | 31 32 | sylan | |
34 | 29 14 | syl | |
35 | 33 34 | sseqtrrd | |
36 | funimass3 | |
|
37 | 30 35 36 | syl2anc | |
38 | 37 | anbi2d | |
39 | 38 | rexbidva | |
40 | 28 39 | mpbid | |
41 | 40 | expr | |
42 | 41 | ralimdva | |
43 | 18 42 | syld | |
44 | 43 | impr | |
45 | 44 | an32s | |
46 | topontop | |
|
47 | 46 | ad3antrrr | |
48 | eltop2 | |
|
49 | 47 48 | syl | |
50 | 45 49 | mpbird | |
51 | 50 | ralrimiva | |
52 | 1 | adantr | |
53 | 12 51 52 | mpbir2and | |
54 | 11 53 | impbida | |