Step |
Hyp |
Ref |
Expression |
1 |
|
iscn |
|
2 |
1
|
simprbda |
|
3 |
|
eqid |
|
4 |
3
|
cncnpi |
|
5 |
4
|
ralrimiva |
|
6 |
5
|
adantl |
|
7 |
|
toponuni |
|
8 |
7
|
ad2antrr |
|
9 |
8
|
raleqdv |
|
10 |
6 9
|
mpbird |
|
11 |
2 10
|
jca |
|
12 |
|
simprl |
|
13 |
|
cnvimass |
|
14 |
|
fdm |
|
15 |
14
|
adantl |
|
16 |
13 15
|
sseqtrid |
|
17 |
|
ssralv |
|
18 |
16 17
|
syl |
|
19 |
|
simprr |
|
20 |
|
simpllr |
|
21 |
|
ffn |
|
22 |
21
|
ad2antlr |
|
23 |
|
simprl |
|
24 |
|
elpreima |
|
25 |
24
|
simplbda |
|
26 |
22 23 25
|
syl2anc |
|
27 |
|
cnpimaex |
|
28 |
19 20 26 27
|
syl3anc |
|
29 |
|
simpllr |
|
30 |
29
|
ffund |
|
31 |
|
simp-4l |
|
32 |
|
toponss |
|
33 |
31 32
|
sylan |
|
34 |
29 14
|
syl |
|
35 |
33 34
|
sseqtrrd |
|
36 |
|
funimass3 |
|
37 |
30 35 36
|
syl2anc |
|
38 |
37
|
anbi2d |
|
39 |
38
|
rexbidva |
|
40 |
28 39
|
mpbid |
|
41 |
40
|
expr |
|
42 |
41
|
ralimdva |
|
43 |
18 42
|
syld |
|
44 |
43
|
impr |
|
45 |
44
|
an32s |
|
46 |
|
topontop |
|
47 |
46
|
ad3antrrr |
|
48 |
|
eltop2 |
|
49 |
47 48
|
syl |
|
50 |
45 49
|
mpbird |
|
51 |
50
|
ralrimiva |
|
52 |
1
|
adantr |
|
53 |
12 51 52
|
mpbir2and |
|
54 |
11 53
|
impbida |
|