Metamath Proof Explorer


Theorem cncnp2

Description: A continuous function is continuous at all points. Theorem 7.2(g) of Munkres p. 107. (Contributed by Raph Levien, 20-Nov-2006) (Proof shortened by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypotheses cncnp.1 X=J
cncnp.2 Y=K
Assertion cncnp2 XFJCnKxXFJCnPKx

Proof

Step Hyp Ref Expression
1 cncnp.1 X=J
2 cncnp.2 Y=K
3 cntop1 FJCnKJTop
4 1 toptopon JTopJTopOnX
5 3 4 sylib FJCnKJTopOnX
6 cntop2 FJCnKKTop
7 2 toptopon KTopKTopOnY
8 6 7 sylib FJCnKKTopOnY
9 1 2 cnf FJCnKF:XY
10 5 8 9 jca31 FJCnKJTopOnXKTopOnYF:XY
11 10 adantl XFJCnKJTopOnXKTopOnYF:XY
12 r19.2z XxXFJCnPKxxXFJCnPKx
13 cnptop1 FJCnPKxJTop
14 13 4 sylib FJCnPKxJTopOnX
15 cnptop2 FJCnPKxKTop
16 15 7 sylib FJCnPKxKTopOnY
17 1 2 cnpf FJCnPKxF:XY
18 14 16 17 jca31 FJCnPKxJTopOnXKTopOnYF:XY
19 18 rexlimivw xXFJCnPKxJTopOnXKTopOnYF:XY
20 12 19 syl XxXFJCnPKxJTopOnXKTopOnYF:XY
21 cncnp JTopOnXKTopOnYFJCnKF:XYxXFJCnPKx
22 21 baibd JTopOnXKTopOnYF:XYFJCnKxXFJCnPKx
23 11 20 22 pm5.21nd XFJCnKxXFJCnPKx