Description: A continuous function is continuous at all points. One direction of Theorem 7.2(g) of Munkres p. 107. (Contributed by Raph Levien, 20-Nov-2006) (Proof shortened by Mario Carneiro, 21-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cnsscnp.1 | |
|
Assertion | cncnpi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnsscnp.1 | |
|
2 | eqid | |
|
3 | 1 2 | cnf | |
4 | 3 | adantr | |
5 | cnima | |
|
6 | 5 | ad2ant2r | |
7 | simpr | |
|
8 | 7 | adantr | |
9 | simprr | |
|
10 | 3 | ad2antrr | |
11 | ffn | |
|
12 | elpreima | |
|
13 | 10 11 12 | 3syl | |
14 | 8 9 13 | mpbir2and | |
15 | eqimss | |
|
16 | 15 | biantrud | |
17 | eleq2 | |
|
18 | 16 17 | bitr3d | |
19 | 18 | rspcev | |
20 | 6 14 19 | syl2anc | |
21 | 20 | expr | |
22 | 21 | ralrimiva | |
23 | cntop1 | |
|
24 | 23 | adantr | |
25 | 1 | toptopon | |
26 | 24 25 | sylib | |
27 | cntop2 | |
|
28 | 27 | adantr | |
29 | 2 | toptopon | |
30 | 28 29 | sylib | |
31 | iscnp3 | |
|
32 | 26 30 7 31 | syl3anc | |
33 | 4 22 32 | mpbir2and | |