Metamath Proof Explorer


Theorem cncnpi

Description: A continuous function is continuous at all points. One direction of Theorem 7.2(g) of Munkres p. 107. (Contributed by Raph Levien, 20-Nov-2006) (Proof shortened by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypothesis cnsscnp.1 X=J
Assertion cncnpi FJCnKAXFJCnPKA

Proof

Step Hyp Ref Expression
1 cnsscnp.1 X=J
2 eqid K=K
3 1 2 cnf FJCnKF:XK
4 3 adantr FJCnKAXF:XK
5 cnima FJCnKyKF-1yJ
6 5 ad2ant2r FJCnKAXyKFAyF-1yJ
7 simpr FJCnKAXAX
8 7 adantr FJCnKAXyKFAyAX
9 simprr FJCnKAXyKFAyFAy
10 3 ad2antrr FJCnKAXyKFAyF:XK
11 ffn F:XKFFnX
12 elpreima FFnXAF-1yAXFAy
13 10 11 12 3syl FJCnKAXyKFAyAF-1yAXFAy
14 8 9 13 mpbir2and FJCnKAXyKFAyAF-1y
15 eqimss x=F-1yxF-1y
16 15 biantrud x=F-1yAxAxxF-1y
17 eleq2 x=F-1yAxAF-1y
18 16 17 bitr3d x=F-1yAxxF-1yAF-1y
19 18 rspcev F-1yJAF-1yxJAxxF-1y
20 6 14 19 syl2anc FJCnKAXyKFAyxJAxxF-1y
21 20 expr FJCnKAXyKFAyxJAxxF-1y
22 21 ralrimiva FJCnKAXyKFAyxJAxxF-1y
23 cntop1 FJCnKJTop
24 23 adantr FJCnKAXJTop
25 1 toptopon JTopJTopOnX
26 24 25 sylib FJCnKAXJTopOnX
27 cntop2 FJCnKKTop
28 27 adantr FJCnKAXKTop
29 2 toptopon KTopKTopOnK
30 28 29 sylib FJCnKAXKTopOnK
31 iscnp3 JTopOnXKTopOnKAXFJCnPKAF:XKyKFAyxJAxxF-1y
32 26 30 7 31 syl3anc FJCnKAXFJCnPKAF:XKyKFAyxJAxxF-1y
33 4 22 32 mpbir2and FJCnKAXFJCnPKA