Metamath Proof Explorer


Theorem hilmetdval

Description: Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 17-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypothesis hilmet.1 D=norm-
Assertion hilmetdval ABADB=normA-B

Proof

Step Hyp Ref Expression
1 hilmet.1 D=norm-
2 eqid +norm=+norm
3 2 1 hhims D=IndMet+norm
4 2 3 hhmetdval ABADB=normA-B