Metamath Proof Explorer


Theorem dmadjrnb

Description: The adjoint of an operator belongs to the adjoint function's domain. (Note: the converse is dependent on our definition of function value, since it uses ndmfv .) (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion dmadjrnb TdomadjhadjhTdomadjh

Proof

Step Hyp Ref Expression
1 dmadjrn TdomadjhadjhTdomadjh
2 ax-hv0cl 0
3 2 n0ii ¬=
4 eqcom ==
5 3 4 mtbir ¬=
6 dm0 dom=
7 6 eqeq1i dom==
8 5 7 mtbir ¬dom=
9 fdm :dom=
10 8 9 mto ¬:
11 dmadjop domadjh:
12 10 11 mto ¬domadjh
13 ndmfv ¬TdomadjhadjhT=
14 13 eleq1d ¬TdomadjhadjhTdomadjhdomadjh
15 12 14 mtbiri ¬Tdomadjh¬adjhTdomadjh
16 15 con4i adjhTdomadjhTdomadjh
17 1 16 impbii TdomadjhadjhTdomadjh