| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmadjrn |
⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) |
| 2 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
| 3 |
2
|
n0ii |
⊢ ¬ ℋ = ∅ |
| 4 |
|
eqcom |
⊢ ( ∅ = ℋ ↔ ℋ = ∅ ) |
| 5 |
3 4
|
mtbir |
⊢ ¬ ∅ = ℋ |
| 6 |
|
dm0 |
⊢ dom ∅ = ∅ |
| 7 |
6
|
eqeq1i |
⊢ ( dom ∅ = ℋ ↔ ∅ = ℋ ) |
| 8 |
5 7
|
mtbir |
⊢ ¬ dom ∅ = ℋ |
| 9 |
|
fdm |
⊢ ( ∅ : ℋ ⟶ ℋ → dom ∅ = ℋ ) |
| 10 |
8 9
|
mto |
⊢ ¬ ∅ : ℋ ⟶ ℋ |
| 11 |
|
dmadjop |
⊢ ( ∅ ∈ dom adjℎ → ∅ : ℋ ⟶ ℋ ) |
| 12 |
10 11
|
mto |
⊢ ¬ ∅ ∈ dom adjℎ |
| 13 |
|
ndmfv |
⊢ ( ¬ 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) = ∅ ) |
| 14 |
13
|
eleq1d |
⊢ ( ¬ 𝑇 ∈ dom adjℎ → ( ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ↔ ∅ ∈ dom adjℎ ) ) |
| 15 |
12 14
|
mtbiri |
⊢ ( ¬ 𝑇 ∈ dom adjℎ → ¬ ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) |
| 16 |
15
|
con4i |
⊢ ( ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ → 𝑇 ∈ dom adjℎ ) |
| 17 |
1 16
|
impbii |
⊢ ( 𝑇 ∈ dom adjℎ ↔ ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) |