Metamath Proof Explorer
Description: A member of the domain of the adjoint function is a Hilbert space
operator. (Contributed by NM, 15-Feb-2006)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
dmadjop |
⊢ ( 𝑇 ∈ dom adjℎ → 𝑇 : ℋ ⟶ ℋ ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmadjss |
⊢ dom adjℎ ⊆ ( ℋ ↑m ℋ ) |
| 2 |
1
|
sseli |
⊢ ( 𝑇 ∈ dom adjℎ → 𝑇 ∈ ( ℋ ↑m ℋ ) ) |
| 3 |
|
ax-hilex |
⊢ ℋ ∈ V |
| 4 |
3 3
|
elmap |
⊢ ( 𝑇 ∈ ( ℋ ↑m ℋ ) ↔ 𝑇 : ℋ ⟶ ℋ ) |
| 5 |
2 4
|
sylib |
⊢ ( 𝑇 ∈ dom adjℎ → 𝑇 : ℋ ⟶ ℋ ) |