Metamath Proof Explorer


Theorem nmoplb

Description: A lower bound for an operator norm. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmoplb T:AnormA1normTAnormopT

Proof

Step Hyp Ref Expression
1 nmopsetretHIL T:x|ynormy1x=normTy
2 ressxr *
3 1 2 sstrdi T:x|ynormy1x=normTy*
4 3 3ad2ant1 T:AnormA1x|ynormy1x=normTy*
5 fveq2 y=Anormy=normA
6 5 breq1d y=Anormy1normA1
7 2fveq3 y=AnormTy=normTA
8 7 eqeq2d y=AnormTA=normTynormTA=normTA
9 6 8 anbi12d y=Anormy1normTA=normTynormA1normTA=normTA
10 eqid normTA=normTA
11 10 biantru normA1normA1normTA=normTA
12 9 11 bitr4di y=Anormy1normTA=normTynormA1
13 12 rspcev AnormA1ynormy1normTA=normTy
14 fvex normTAV
15 eqeq1 x=normTAx=normTynormTA=normTy
16 15 anbi2d x=normTAnormy1x=normTynormy1normTA=normTy
17 16 rexbidv x=normTAynormy1x=normTyynormy1normTA=normTy
18 14 17 elab normTAx|ynormy1x=normTyynormy1normTA=normTy
19 13 18 sylibr AnormA1normTAx|ynormy1x=normTy
20 19 3adant1 T:AnormA1normTAx|ynormy1x=normTy
21 supxrub x|ynormy1x=normTy*normTAx|ynormy1x=normTynormTAsupx|ynormy1x=normTy*<
22 4 20 21 syl2anc T:AnormA1normTAsupx|ynormy1x=normTy*<
23 nmopval T:normopT=supx|ynormy1x=normTy*<
24 23 3ad2ant1 T:AnormA1normopT=supx|ynormy1x=normTy*<
25 22 24 breqtrrd T:AnormA1normTAnormopT