Metamath Proof Explorer


Theorem nmopsetretHIL

Description: The set in the supremum of the operator norm definition df-nmop is a set of reals. (Contributed by NM, 2-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmopsetretHIL T:x|ynormy1x=normTy

Proof

Step Hyp Ref Expression
1 eqid +norm=+norm
2 1 hhnv +normNrmCVec
3 df-hba =BaseSet+norm
4 1 hhnm norm=normCV+norm
5 3 4 nmosetre +normNrmCVecT:x|ynormy1x=normTy
6 2 5 mpan T:x|ynormy1x=normTy