Metamath Proof Explorer


Theorem nmosetre

Description: The set in the supremum of the operator norm definition df-nmoo is a set of reals. (Contributed by NM, 13-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmosetre.2 Y=BaseSetW
nmosetre.4 N=normCVW
Assertion nmosetre WNrmCVecT:XYx|zXMz1x=NTz

Proof

Step Hyp Ref Expression
1 nmosetre.2 Y=BaseSetW
2 nmosetre.4 N=normCVW
3 ffvelcdm T:XYzXTzY
4 1 2 nvcl WNrmCVecTzYNTz
5 3 4 sylan2 WNrmCVecT:XYzXNTz
6 5 anassrs WNrmCVecT:XYzXNTz
7 eleq1 x=NTzxNTz
8 6 7 imbitrrid x=NTzWNrmCVecT:XYzXx
9 8 impcom WNrmCVecT:XYzXx=NTzx
10 9 adantrl WNrmCVecT:XYzXMz1x=NTzx
11 10 rexlimdva2 WNrmCVecT:XYzXMz1x=NTzx
12 11 abssdv WNrmCVecT:XYx|zXMz1x=NTz