Metamath Proof Explorer


Theorem fnfco

Description: Composition of two functions. (Contributed by NM, 22-May-2006)

Ref Expression
Assertion fnfco FFnAG:BAFGFnB

Proof

Step Hyp Ref Expression
1 df-f G:BAGFnBranGA
2 fnco FFnAGFnBranGAFGFnB
3 2 3expb FFnAGFnBranGAFGFnB
4 1 3 sylan2b FFnAG:BAFGFnB