Metamath Proof Explorer


Theorem issh3

Description: Subspace H of a Hilbert space. (Contributed by NM, 16-Aug-1999) (New usage is discouraged.)

Ref Expression
Assertion issh3 HHS0HxHyHx+yHxyHxyH

Proof

Step Hyp Ref Expression
1 issh2 HSH0HxHyHx+yHxyHxyH
2 anass H0HxHyHx+yHxyHxyHH0HxHyHx+yHxyHxyH
3 2 baib HH0HxHyHx+yHxyHxyH0HxHyHx+yHxyHxyH
4 1 3 bitrid HHS0HxHyHx+yHxyHxyH