Metamath Proof Explorer


Theorem shsubcl

Description: Closure of vector subtraction in a subspace of a Hilbert space. (Contributed by NM, 18-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion shsubcl HSAHBHA-BH

Proof

Step Hyp Ref Expression
1 shss HSH
2 1 sseld HSAHA
3 1 sseld HSBHB
4 2 3 anim12d HSAHBHAB
5 4 3impib HSAHBHAB
6 hvsubval ABA-B=A+-1B
7 5 6 syl HSAHBHA-B=A+-1B
8 neg1cn 1
9 shmulcl HS1BH-1BH
10 8 9 mp3an2 HSBH-1BH
11 10 3adant2 HSAHBH-1BH
12 shaddcl HSAH-1BHA+-1BH
13 11 12 syld3an3 HSAHBHA+-1BH
14 7 13 eqeltrd HSAHBHA-BH