| Step |
Hyp |
Ref |
Expression |
| 1 |
|
shss |
⊢ ( 𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ ) |
| 2 |
1
|
sseld |
⊢ ( 𝐻 ∈ Sℋ → ( 𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ ) ) |
| 3 |
1
|
sseld |
⊢ ( 𝐻 ∈ Sℋ → ( 𝐵 ∈ 𝐻 → 𝐵 ∈ ℋ ) ) |
| 4 |
2 3
|
anim12d |
⊢ ( 𝐻 ∈ Sℋ → ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ) ) |
| 5 |
4
|
3impib |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ) |
| 6 |
|
hvsubval |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| 8 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 9 |
|
shmulcl |
⊢ ( ( 𝐻 ∈ Sℋ ∧ - 1 ∈ ℂ ∧ 𝐵 ∈ 𝐻 ) → ( - 1 ·ℎ 𝐵 ) ∈ 𝐻 ) |
| 10 |
8 9
|
mp3an2 |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐵 ∈ 𝐻 ) → ( - 1 ·ℎ 𝐵 ) ∈ 𝐻 ) |
| 11 |
10
|
3adant2 |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( - 1 ·ℎ 𝐵 ) ∈ 𝐻 ) |
| 12 |
|
shaddcl |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ ( - 1 ·ℎ 𝐵 ) ∈ 𝐻 ) → ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ∈ 𝐻 ) |
| 13 |
11 12
|
syld3an3 |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ∈ 𝐻 ) |
| 14 |
7 13
|
eqeltrd |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 −ℎ 𝐵 ) ∈ 𝐻 ) |