Description: The value of a functional at a member of its kernel is zero. (Contributed by NM, 16-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lkrf0.d | ⊢ 𝐷 = ( Scalar ‘ 𝑊 ) | |
| lkrf0.o | ⊢ 0 = ( 0g ‘ 𝐷 ) | ||
| lkrf0.f | ⊢ 𝐹 = ( LFnl ‘ 𝑊 ) | ||
| lkrf0.k | ⊢ 𝐾 = ( LKer ‘ 𝑊 ) | ||
| Assertion | lkrf0 | ⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ ( 𝐾 ‘ 𝐺 ) ) → ( 𝐺 ‘ 𝑋 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lkrf0.d | ⊢ 𝐷 = ( Scalar ‘ 𝑊 ) | |
| 2 | lkrf0.o | ⊢ 0 = ( 0g ‘ 𝐷 ) | |
| 3 | lkrf0.f | ⊢ 𝐹 = ( LFnl ‘ 𝑊 ) | |
| 4 | lkrf0.k | ⊢ 𝐾 = ( LKer ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 6 | 5 1 2 3 4 | ellkr | ⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ) → ( 𝑋 ∈ ( 𝐾 ‘ 𝐺 ) ↔ ( 𝑋 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝐺 ‘ 𝑋 ) = 0 ) ) ) |
| 7 | 6 | simplbda | ⊢ ( ( ( 𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ) ∧ 𝑋 ∈ ( 𝐾 ‘ 𝐺 ) ) → ( 𝐺 ‘ 𝑋 ) = 0 ) |
| 8 | 7 | 3impa | ⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ ( 𝐾 ‘ 𝐺 ) ) → ( 𝐺 ‘ 𝑋 ) = 0 ) |