Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Functionals and kernels of a left vector space (or module)
lkrcl
Next ⟩
lkrf0
Metamath Proof Explorer
Ascii
Unicode
Theorem
lkrcl
Description:
A member of the kernel of a functional is a vector.
(Contributed by
NM
, 16-Apr-2014)
Ref
Expression
Hypotheses
lkrcl.v
⊢
V
=
Base
W
lkrcl.f
⊢
F
=
LFnl
⁡
W
lkrcl.k
⊢
K
=
LKer
⁡
W
Assertion
lkrcl
⊢
W
∈
Y
∧
G
∈
F
∧
X
∈
K
⁡
G
→
X
∈
V
Proof
Step
Hyp
Ref
Expression
1
lkrcl.v
⊢
V
=
Base
W
2
lkrcl.f
⊢
F
=
LFnl
⁡
W
3
lkrcl.k
⊢
K
=
LKer
⁡
W
4
eqid
⊢
Scalar
⁡
W
=
Scalar
⁡
W
5
eqid
⊢
0
Scalar
⁡
W
=
0
Scalar
⁡
W
6
1
4
5
2
3
ellkr
⊢
W
∈
Y
∧
G
∈
F
→
X
∈
K
⁡
G
↔
X
∈
V
∧
G
⁡
X
=
0
Scalar
⁡
W
7
6
simprbda
⊢
W
∈
Y
∧
G
∈
F
∧
X
∈
K
⁡
G
→
X
∈
V
8
7
3impa
⊢
W
∈
Y
∧
G
∈
F
∧
X
∈
K
⁡
G
→
X
∈
V