Metamath Proof Explorer


Theorem lkrcl

Description: A member of the kernel of a functional is a vector. (Contributed by NM, 16-Apr-2014)

Ref Expression
Hypotheses lkrcl.v V = Base W
lkrcl.f F = LFnl W
lkrcl.k K = LKer W
Assertion lkrcl W Y G F X K G X V

Proof

Step Hyp Ref Expression
1 lkrcl.v V = Base W
2 lkrcl.f F = LFnl W
3 lkrcl.k K = LKer W
4 eqid Scalar W = Scalar W
5 eqid 0 Scalar W = 0 Scalar W
6 1 4 5 2 3 ellkr W Y G F X K G X V G X = 0 Scalar W
7 6 simprbda W Y G F X K G X V
8 7 3impa W Y G F X K G X V