Metamath Proof Explorer


Theorem fconst4

Description: Two ways to express a constant function. (Contributed by NM, 8-Mar-2007)

Ref Expression
Assertion fconst4 F:ABFFnAF-1B=A

Proof

Step Hyp Ref Expression
1 fconst3 F:ABFFnAAF-1B
2 cnvimass F-1BdomF
3 fndm FFnAdomF=A
4 2 3 sseqtrid FFnAF-1BA
5 4 biantrurd FFnAAF-1BF-1BAAF-1B
6 eqss F-1B=AF-1BAAF-1B
7 5 6 bitr4di FFnAAF-1BF-1B=A
8 7 pm5.32i FFnAAF-1BFFnAF-1B=A
9 1 8 bitri F:ABFFnAF-1B=A