| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fconst3 |
|- ( F : A --> { B } <-> ( F Fn A /\ A C_ ( `' F " { B } ) ) ) |
| 2 |
|
cnvimass |
|- ( `' F " { B } ) C_ dom F |
| 3 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
| 4 |
2 3
|
sseqtrid |
|- ( F Fn A -> ( `' F " { B } ) C_ A ) |
| 5 |
4
|
biantrurd |
|- ( F Fn A -> ( A C_ ( `' F " { B } ) <-> ( ( `' F " { B } ) C_ A /\ A C_ ( `' F " { B } ) ) ) ) |
| 6 |
|
eqss |
|- ( ( `' F " { B } ) = A <-> ( ( `' F " { B } ) C_ A /\ A C_ ( `' F " { B } ) ) ) |
| 7 |
5 6
|
bitr4di |
|- ( F Fn A -> ( A C_ ( `' F " { B } ) <-> ( `' F " { B } ) = A ) ) |
| 8 |
7
|
pm5.32i |
|- ( ( F Fn A /\ A C_ ( `' F " { B } ) ) <-> ( F Fn A /\ ( `' F " { B } ) = A ) ) |
| 9 |
1 8
|
bitri |
|- ( F : A --> { B } <-> ( F Fn A /\ ( `' F " { B } ) = A ) ) |