Step |
Hyp |
Ref |
Expression |
1 |
|
fconst3 |
⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ ( 𝐹 Fn 𝐴 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝐵 } ) ) ) |
2 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ { 𝐵 } ) ⊆ dom 𝐹 |
3 |
|
fndm |
⊢ ( 𝐹 Fn 𝐴 → dom 𝐹 = 𝐴 ) |
4 |
2 3
|
sseqtrid |
⊢ ( 𝐹 Fn 𝐴 → ( ◡ 𝐹 “ { 𝐵 } ) ⊆ 𝐴 ) |
5 |
4
|
biantrurd |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐴 ⊆ ( ◡ 𝐹 “ { 𝐵 } ) ↔ ( ( ◡ 𝐹 “ { 𝐵 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝐵 } ) ) ) ) |
6 |
|
eqss |
⊢ ( ( ◡ 𝐹 “ { 𝐵 } ) = 𝐴 ↔ ( ( ◡ 𝐹 “ { 𝐵 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝐵 } ) ) ) |
7 |
5 6
|
bitr4di |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐴 ⊆ ( ◡ 𝐹 “ { 𝐵 } ) ↔ ( ◡ 𝐹 “ { 𝐵 } ) = 𝐴 ) ) |
8 |
7
|
pm5.32i |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ⊆ ( ◡ 𝐹 “ { 𝐵 } ) ) ↔ ( 𝐹 Fn 𝐴 ∧ ( ◡ 𝐹 “ { 𝐵 } ) = 𝐴 ) ) |
9 |
1 8
|
bitri |
⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ ( 𝐹 Fn 𝐴 ∧ ( ◡ 𝐹 “ { 𝐵 } ) = 𝐴 ) ) |