Metamath Proof Explorer


Theorem lkrval

Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014)

Ref Expression
Hypotheses lkrfval.d D = Scalar W
lkrfval.o 0 ˙ = 0 D
lkrfval.f F = LFnl W
lkrfval.k K = LKer W
Assertion lkrval W X G F K G = G -1 0 ˙

Proof

Step Hyp Ref Expression
1 lkrfval.d D = Scalar W
2 lkrfval.o 0 ˙ = 0 D
3 lkrfval.f F = LFnl W
4 lkrfval.k K = LKer W
5 1 2 3 4 lkrfval W X K = f F f -1 0 ˙
6 5 fveq1d W X K G = f F f -1 0 ˙ G
7 cnvexg G F G -1 V
8 imaexg G -1 V G -1 0 ˙ V
9 7 8 syl G F G -1 0 ˙ V
10 cnveq f = G f -1 = G -1
11 10 imaeq1d f = G f -1 0 ˙ = G -1 0 ˙
12 eqid f F f -1 0 ˙ = f F f -1 0 ˙
13 11 12 fvmptg G F G -1 0 ˙ V f F f -1 0 ˙ G = G -1 0 ˙
14 9 13 mpdan G F f F f -1 0 ˙ G = G -1 0 ˙
15 6 14 sylan9eq W X G F K G = G -1 0 ˙