Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Functionals and kernels of a left vector space (or module)
lkrval
Next ⟩
ellkr
Metamath Proof Explorer
Ascii
Unicode
Theorem
lkrval
Description:
Value of the kernel of a functional.
(Contributed by
NM
, 15-Apr-2014)
Ref
Expression
Hypotheses
lkrfval.d
⊢
D
=
Scalar
⁡
W
lkrfval.o
⊢
0
˙
=
0
D
lkrfval.f
⊢
F
=
LFnl
⁡
W
lkrfval.k
⊢
K
=
LKer
⁡
W
Assertion
lkrval
⊢
W
∈
X
∧
G
∈
F
→
K
⁡
G
=
G
-1
0
˙
Proof
Step
Hyp
Ref
Expression
1
lkrfval.d
⊢
D
=
Scalar
⁡
W
2
lkrfval.o
⊢
0
˙
=
0
D
3
lkrfval.f
⊢
F
=
LFnl
⁡
W
4
lkrfval.k
⊢
K
=
LKer
⁡
W
5
1
2
3
4
lkrfval
⊢
W
∈
X
→
K
=
f
∈
F
⟼
f
-1
0
˙
6
5
fveq1d
⊢
W
∈
X
→
K
⁡
G
=
f
∈
F
⟼
f
-1
0
˙
⁡
G
7
cnvexg
⊢
G
∈
F
→
G
-1
∈
V
8
imaexg
⊢
G
-1
∈
V
→
G
-1
0
˙
∈
V
9
7
8
syl
⊢
G
∈
F
→
G
-1
0
˙
∈
V
10
cnveq
⊢
f
=
G
→
f
-1
=
G
-1
11
10
imaeq1d
⊢
f
=
G
→
f
-1
0
˙
=
G
-1
0
˙
12
eqid
⊢
f
∈
F
⟼
f
-1
0
˙
=
f
∈
F
⟼
f
-1
0
˙
13
11
12
fvmptg
⊢
G
∈
F
∧
G
-1
0
˙
∈
V
→
f
∈
F
⟼
f
-1
0
˙
⁡
G
=
G
-1
0
˙
14
9
13
mpdan
⊢
G
∈
F
→
f
∈
F
⟼
f
-1
0
˙
⁡
G
=
G
-1
0
˙
15
6
14
sylan9eq
⊢
W
∈
X
∧
G
∈
F
→
K
⁡
G
=
G
-1
0
˙