Metamath Proof Explorer


Theorem lkrfval

Description: The kernel of a functional. (Contributed by NM, 15-Apr-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses lkrfval.d D = Scalar W
lkrfval.o 0 ˙ = 0 D
lkrfval.f F = LFnl W
lkrfval.k K = LKer W
Assertion lkrfval W X K = f F f -1 0 ˙

Proof

Step Hyp Ref Expression
1 lkrfval.d D = Scalar W
2 lkrfval.o 0 ˙ = 0 D
3 lkrfval.f F = LFnl W
4 lkrfval.k K = LKer W
5 elex W X W V
6 fveq2 w = W LFnl w = LFnl W
7 6 3 eqtr4di w = W LFnl w = F
8 fveq2 w = W Scalar w = Scalar W
9 8 1 eqtr4di w = W Scalar w = D
10 9 fveq2d w = W 0 Scalar w = 0 D
11 10 2 eqtr4di w = W 0 Scalar w = 0 ˙
12 11 sneqd w = W 0 Scalar w = 0 ˙
13 12 imaeq2d w = W f -1 0 Scalar w = f -1 0 ˙
14 7 13 mpteq12dv w = W f LFnl w f -1 0 Scalar w = f F f -1 0 ˙
15 df-lkr LKer = w V f LFnl w f -1 0 Scalar w
16 14 15 3 mptfvmpt W V LKer W = f F f -1 0 ˙
17 4 16 syl5eq W V K = f F f -1 0 ˙
18 5 17 syl W X K = f F f -1 0 ˙