Metamath Proof Explorer


Theorem lkrfval

Description: The kernel of a functional. (Contributed by NM, 15-Apr-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses lkrfval.d
|- D = ( Scalar ` W )
lkrfval.o
|- .0. = ( 0g ` D )
lkrfval.f
|- F = ( LFnl ` W )
lkrfval.k
|- K = ( LKer ` W )
Assertion lkrfval
|- ( W e. X -> K = ( f e. F |-> ( `' f " { .0. } ) ) )

Proof

Step Hyp Ref Expression
1 lkrfval.d
 |-  D = ( Scalar ` W )
2 lkrfval.o
 |-  .0. = ( 0g ` D )
3 lkrfval.f
 |-  F = ( LFnl ` W )
4 lkrfval.k
 |-  K = ( LKer ` W )
5 elex
 |-  ( W e. X -> W e. _V )
6 fveq2
 |-  ( w = W -> ( LFnl ` w ) = ( LFnl ` W ) )
7 6 3 eqtr4di
 |-  ( w = W -> ( LFnl ` w ) = F )
8 fveq2
 |-  ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) )
9 8 1 eqtr4di
 |-  ( w = W -> ( Scalar ` w ) = D )
10 9 fveq2d
 |-  ( w = W -> ( 0g ` ( Scalar ` w ) ) = ( 0g ` D ) )
11 10 2 eqtr4di
 |-  ( w = W -> ( 0g ` ( Scalar ` w ) ) = .0. )
12 11 sneqd
 |-  ( w = W -> { ( 0g ` ( Scalar ` w ) ) } = { .0. } )
13 12 imaeq2d
 |-  ( w = W -> ( `' f " { ( 0g ` ( Scalar ` w ) ) } ) = ( `' f " { .0. } ) )
14 7 13 mpteq12dv
 |-  ( w = W -> ( f e. ( LFnl ` w ) |-> ( `' f " { ( 0g ` ( Scalar ` w ) ) } ) ) = ( f e. F |-> ( `' f " { .0. } ) ) )
15 df-lkr
 |-  LKer = ( w e. _V |-> ( f e. ( LFnl ` w ) |-> ( `' f " { ( 0g ` ( Scalar ` w ) ) } ) ) )
16 14 15 3 mptfvmpt
 |-  ( W e. _V -> ( LKer ` W ) = ( f e. F |-> ( `' f " { .0. } ) ) )
17 4 16 syl5eq
 |-  ( W e. _V -> K = ( f e. F |-> ( `' f " { .0. } ) ) )
18 5 17 syl
 |-  ( W e. X -> K = ( f e. F |-> ( `' f " { .0. } ) ) )