| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clk |
|- LKer |
| 1 |
|
vw |
|- w |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vf |
|- f |
| 4 |
|
clfn |
|- LFnl |
| 5 |
1
|
cv |
|- w |
| 6 |
5 4
|
cfv |
|- ( LFnl ` w ) |
| 7 |
3
|
cv |
|- f |
| 8 |
7
|
ccnv |
|- `' f |
| 9 |
|
c0g |
|- 0g |
| 10 |
|
csca |
|- Scalar |
| 11 |
5 10
|
cfv |
|- ( Scalar ` w ) |
| 12 |
11 9
|
cfv |
|- ( 0g ` ( Scalar ` w ) ) |
| 13 |
12
|
csn |
|- { ( 0g ` ( Scalar ` w ) ) } |
| 14 |
8 13
|
cima |
|- ( `' f " { ( 0g ` ( Scalar ` w ) ) } ) |
| 15 |
3 6 14
|
cmpt |
|- ( f e. ( LFnl ` w ) |-> ( `' f " { ( 0g ` ( Scalar ` w ) ) } ) ) |
| 16 |
1 2 15
|
cmpt |
|- ( w e. _V |-> ( f e. ( LFnl ` w ) |-> ( `' f " { ( 0g ` ( Scalar ` w ) ) } ) ) ) |
| 17 |
0 16
|
wceq |
|- LKer = ( w e. _V |-> ( f e. ( LFnl ` w ) |-> ( `' f " { ( 0g ` ( Scalar ` w ) ) } ) ) ) |