Step |
Hyp |
Ref |
Expression |
0 |
|
clk |
|- LKer |
1 |
|
vw |
|- w |
2 |
|
cvv |
|- _V |
3 |
|
vf |
|- f |
4 |
|
clfn |
|- LFnl |
5 |
1
|
cv |
|- w |
6 |
5 4
|
cfv |
|- ( LFnl ` w ) |
7 |
3
|
cv |
|- f |
8 |
7
|
ccnv |
|- `' f |
9 |
|
c0g |
|- 0g |
10 |
|
csca |
|- Scalar |
11 |
5 10
|
cfv |
|- ( Scalar ` w ) |
12 |
11 9
|
cfv |
|- ( 0g ` ( Scalar ` w ) ) |
13 |
12
|
csn |
|- { ( 0g ` ( Scalar ` w ) ) } |
14 |
8 13
|
cima |
|- ( `' f " { ( 0g ` ( Scalar ` w ) ) } ) |
15 |
3 6 14
|
cmpt |
|- ( f e. ( LFnl ` w ) |-> ( `' f " { ( 0g ` ( Scalar ` w ) ) } ) ) |
16 |
1 2 15
|
cmpt |
|- ( w e. _V |-> ( f e. ( LFnl ` w ) |-> ( `' f " { ( 0g ` ( Scalar ` w ) ) } ) ) ) |
17 |
0 16
|
wceq |
|- LKer = ( w e. _V |-> ( f e. ( LFnl ` w ) |-> ( `' f " { ( 0g ` ( Scalar ` w ) ) } ) ) ) |