| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clk |
⊢ LKer |
| 1 |
|
vw |
⊢ 𝑤 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vf |
⊢ 𝑓 |
| 4 |
|
clfn |
⊢ LFnl |
| 5 |
1
|
cv |
⊢ 𝑤 |
| 6 |
5 4
|
cfv |
⊢ ( LFnl ‘ 𝑤 ) |
| 7 |
3
|
cv |
⊢ 𝑓 |
| 8 |
7
|
ccnv |
⊢ ◡ 𝑓 |
| 9 |
|
c0g |
⊢ 0g |
| 10 |
|
csca |
⊢ Scalar |
| 11 |
5 10
|
cfv |
⊢ ( Scalar ‘ 𝑤 ) |
| 12 |
11 9
|
cfv |
⊢ ( 0g ‘ ( Scalar ‘ 𝑤 ) ) |
| 13 |
12
|
csn |
⊢ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } |
| 14 |
8 13
|
cima |
⊢ ( ◡ 𝑓 “ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) |
| 15 |
3 6 14
|
cmpt |
⊢ ( 𝑓 ∈ ( LFnl ‘ 𝑤 ) ↦ ( ◡ 𝑓 “ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) ) |
| 16 |
1 2 15
|
cmpt |
⊢ ( 𝑤 ∈ V ↦ ( 𝑓 ∈ ( LFnl ‘ 𝑤 ) ↦ ( ◡ 𝑓 “ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) ) ) |
| 17 |
0 16
|
wceq |
⊢ LKer = ( 𝑤 ∈ V ↦ ( 𝑓 ∈ ( LFnl ‘ 𝑤 ) ↦ ( ◡ 𝑓 “ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) ) ) |