Metamath Proof Explorer


Definition df-lkr

Description: Define the kernel of a functional (set of vectors whose functional value is zero) on a left module or left vector space. (Contributed by NM, 15-Apr-2014)

Ref Expression
Assertion df-lkr LKer = ( 𝑤 ∈ V ↦ ( 𝑓 ∈ ( LFnl ‘ 𝑤 ) ↦ ( 𝑓 “ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clk LKer
1 vw 𝑤
2 cvv V
3 vf 𝑓
4 clfn LFnl
5 1 cv 𝑤
6 5 4 cfv ( LFnl ‘ 𝑤 )
7 3 cv 𝑓
8 7 ccnv 𝑓
9 c0g 0g
10 csca Scalar
11 5 10 cfv ( Scalar ‘ 𝑤 )
12 11 9 cfv ( 0g ‘ ( Scalar ‘ 𝑤 ) )
13 12 csn { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) }
14 8 13 cima ( 𝑓 “ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } )
15 3 6 14 cmpt ( 𝑓 ∈ ( LFnl ‘ 𝑤 ) ↦ ( 𝑓 “ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) )
16 1 2 15 cmpt ( 𝑤 ∈ V ↦ ( 𝑓 ∈ ( LFnl ‘ 𝑤 ) ↦ ( 𝑓 “ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) ) )
17 0 16 wceq LKer = ( 𝑤 ∈ V ↦ ( 𝑓 ∈ ( LFnl ‘ 𝑤 ) ↦ ( 𝑓 “ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) ) )