Step |
Hyp |
Ref |
Expression |
1 |
|
lkrfval.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
2 |
|
lkrfval.o |
⊢ 0 = ( 0g ‘ 𝐷 ) |
3 |
|
lkrfval.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
4 |
|
lkrfval.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
5 |
|
elex |
⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) |
6 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( LFnl ‘ 𝑤 ) = ( LFnl ‘ 𝑊 ) ) |
7 |
6 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( LFnl ‘ 𝑤 ) = 𝐹 ) |
8 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
9 |
8 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐷 ) |
10 |
9
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( 0g ‘ ( Scalar ‘ 𝑤 ) ) = ( 0g ‘ 𝐷 ) ) |
11 |
10 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( 0g ‘ ( Scalar ‘ 𝑤 ) ) = 0 ) |
12 |
11
|
sneqd |
⊢ ( 𝑤 = 𝑊 → { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } = { 0 } ) |
13 |
12
|
imaeq2d |
⊢ ( 𝑤 = 𝑊 → ( ◡ 𝑓 “ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) = ( ◡ 𝑓 “ { 0 } ) ) |
14 |
7 13
|
mpteq12dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑓 ∈ ( LFnl ‘ 𝑤 ) ↦ ( ◡ 𝑓 “ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) ) = ( 𝑓 ∈ 𝐹 ↦ ( ◡ 𝑓 “ { 0 } ) ) ) |
15 |
|
df-lkr |
⊢ LKer = ( 𝑤 ∈ V ↦ ( 𝑓 ∈ ( LFnl ‘ 𝑤 ) ↦ ( ◡ 𝑓 “ { ( 0g ‘ ( Scalar ‘ 𝑤 ) ) } ) ) ) |
16 |
14 15 3
|
mptfvmpt |
⊢ ( 𝑊 ∈ V → ( LKer ‘ 𝑊 ) = ( 𝑓 ∈ 𝐹 ↦ ( ◡ 𝑓 “ { 0 } ) ) ) |
17 |
4 16
|
syl5eq |
⊢ ( 𝑊 ∈ V → 𝐾 = ( 𝑓 ∈ 𝐹 ↦ ( ◡ 𝑓 “ { 0 } ) ) ) |
18 |
5 17
|
syl |
⊢ ( 𝑊 ∈ 𝑋 → 𝐾 = ( 𝑓 ∈ 𝐹 ↦ ( ◡ 𝑓 “ { 0 } ) ) ) |