Metamath Proof Explorer


Theorem lkrval

Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014)

Ref Expression
Hypotheses lkrfval.d 𝐷 = ( Scalar ‘ 𝑊 )
lkrfval.o 0 = ( 0g𝐷 )
lkrfval.f 𝐹 = ( LFnl ‘ 𝑊 )
lkrfval.k 𝐾 = ( LKer ‘ 𝑊 )
Assertion lkrval ( ( 𝑊𝑋𝐺𝐹 ) → ( 𝐾𝐺 ) = ( 𝐺 “ { 0 } ) )

Proof

Step Hyp Ref Expression
1 lkrfval.d 𝐷 = ( Scalar ‘ 𝑊 )
2 lkrfval.o 0 = ( 0g𝐷 )
3 lkrfval.f 𝐹 = ( LFnl ‘ 𝑊 )
4 lkrfval.k 𝐾 = ( LKer ‘ 𝑊 )
5 1 2 3 4 lkrfval ( 𝑊𝑋𝐾 = ( 𝑓𝐹 ↦ ( 𝑓 “ { 0 } ) ) )
6 5 fveq1d ( 𝑊𝑋 → ( 𝐾𝐺 ) = ( ( 𝑓𝐹 ↦ ( 𝑓 “ { 0 } ) ) ‘ 𝐺 ) )
7 cnvexg ( 𝐺𝐹 𝐺 ∈ V )
8 imaexg ( 𝐺 ∈ V → ( 𝐺 “ { 0 } ) ∈ V )
9 7 8 syl ( 𝐺𝐹 → ( 𝐺 “ { 0 } ) ∈ V )
10 cnveq ( 𝑓 = 𝐺 𝑓 = 𝐺 )
11 10 imaeq1d ( 𝑓 = 𝐺 → ( 𝑓 “ { 0 } ) = ( 𝐺 “ { 0 } ) )
12 eqid ( 𝑓𝐹 ↦ ( 𝑓 “ { 0 } ) ) = ( 𝑓𝐹 ↦ ( 𝑓 “ { 0 } ) )
13 11 12 fvmptg ( ( 𝐺𝐹 ∧ ( 𝐺 “ { 0 } ) ∈ V ) → ( ( 𝑓𝐹 ↦ ( 𝑓 “ { 0 } ) ) ‘ 𝐺 ) = ( 𝐺 “ { 0 } ) )
14 9 13 mpdan ( 𝐺𝐹 → ( ( 𝑓𝐹 ↦ ( 𝑓 “ { 0 } ) ) ‘ 𝐺 ) = ( 𝐺 “ { 0 } ) )
15 6 14 sylan9eq ( ( 𝑊𝑋𝐺𝐹 ) → ( 𝐾𝐺 ) = ( 𝐺 “ { 0 } ) )