Step |
Hyp |
Ref |
Expression |
1 |
|
lkrfval.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
2 |
|
lkrfval.o |
⊢ 0 = ( 0g ‘ 𝐷 ) |
3 |
|
lkrfval.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
4 |
|
lkrfval.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
5 |
1 2 3 4
|
lkrfval |
⊢ ( 𝑊 ∈ 𝑋 → 𝐾 = ( 𝑓 ∈ 𝐹 ↦ ( ◡ 𝑓 “ { 0 } ) ) ) |
6 |
5
|
fveq1d |
⊢ ( 𝑊 ∈ 𝑋 → ( 𝐾 ‘ 𝐺 ) = ( ( 𝑓 ∈ 𝐹 ↦ ( ◡ 𝑓 “ { 0 } ) ) ‘ 𝐺 ) ) |
7 |
|
cnvexg |
⊢ ( 𝐺 ∈ 𝐹 → ◡ 𝐺 ∈ V ) |
8 |
|
imaexg |
⊢ ( ◡ 𝐺 ∈ V → ( ◡ 𝐺 “ { 0 } ) ∈ V ) |
9 |
7 8
|
syl |
⊢ ( 𝐺 ∈ 𝐹 → ( ◡ 𝐺 “ { 0 } ) ∈ V ) |
10 |
|
cnveq |
⊢ ( 𝑓 = 𝐺 → ◡ 𝑓 = ◡ 𝐺 ) |
11 |
10
|
imaeq1d |
⊢ ( 𝑓 = 𝐺 → ( ◡ 𝑓 “ { 0 } ) = ( ◡ 𝐺 “ { 0 } ) ) |
12 |
|
eqid |
⊢ ( 𝑓 ∈ 𝐹 ↦ ( ◡ 𝑓 “ { 0 } ) ) = ( 𝑓 ∈ 𝐹 ↦ ( ◡ 𝑓 “ { 0 } ) ) |
13 |
11 12
|
fvmptg |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( ◡ 𝐺 “ { 0 } ) ∈ V ) → ( ( 𝑓 ∈ 𝐹 ↦ ( ◡ 𝑓 “ { 0 } ) ) ‘ 𝐺 ) = ( ◡ 𝐺 “ { 0 } ) ) |
14 |
9 13
|
mpdan |
⊢ ( 𝐺 ∈ 𝐹 → ( ( 𝑓 ∈ 𝐹 ↦ ( ◡ 𝑓 “ { 0 } ) ) ‘ 𝐺 ) = ( ◡ 𝐺 “ { 0 } ) ) |
15 |
6 14
|
sylan9eq |
⊢ ( ( 𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹 ) → ( 𝐾 ‘ 𝐺 ) = ( ◡ 𝐺 “ { 0 } ) ) |