Step |
Hyp |
Ref |
Expression |
1 |
|
lkrfval.d |
|- D = ( Scalar ` W ) |
2 |
|
lkrfval.o |
|- .0. = ( 0g ` D ) |
3 |
|
lkrfval.f |
|- F = ( LFnl ` W ) |
4 |
|
lkrfval.k |
|- K = ( LKer ` W ) |
5 |
1 2 3 4
|
lkrfval |
|- ( W e. X -> K = ( f e. F |-> ( `' f " { .0. } ) ) ) |
6 |
5
|
fveq1d |
|- ( W e. X -> ( K ` G ) = ( ( f e. F |-> ( `' f " { .0. } ) ) ` G ) ) |
7 |
|
cnvexg |
|- ( G e. F -> `' G e. _V ) |
8 |
|
imaexg |
|- ( `' G e. _V -> ( `' G " { .0. } ) e. _V ) |
9 |
7 8
|
syl |
|- ( G e. F -> ( `' G " { .0. } ) e. _V ) |
10 |
|
cnveq |
|- ( f = G -> `' f = `' G ) |
11 |
10
|
imaeq1d |
|- ( f = G -> ( `' f " { .0. } ) = ( `' G " { .0. } ) ) |
12 |
|
eqid |
|- ( f e. F |-> ( `' f " { .0. } ) ) = ( f e. F |-> ( `' f " { .0. } ) ) |
13 |
11 12
|
fvmptg |
|- ( ( G e. F /\ ( `' G " { .0. } ) e. _V ) -> ( ( f e. F |-> ( `' f " { .0. } ) ) ` G ) = ( `' G " { .0. } ) ) |
14 |
9 13
|
mpdan |
|- ( G e. F -> ( ( f e. F |-> ( `' f " { .0. } ) ) ` G ) = ( `' G " { .0. } ) ) |
15 |
6 14
|
sylan9eq |
|- ( ( W e. X /\ G e. F ) -> ( K ` G ) = ( `' G " { .0. } ) ) |