Step |
Hyp |
Ref |
Expression |
1 |
|
lkrfval2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lkrfval2.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
3 |
|
lkrfval2.o |
⊢ 0 = ( 0g ‘ 𝐷 ) |
4 |
|
lkrfval2.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
5 |
|
lkrfval2.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
6 |
|
ellkr2.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑌 ) |
7 |
|
ellkr2.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
8 |
|
ellkr2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
9 |
1 2 3 4 5
|
ellkr |
⊢ ( ( 𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ) → ( 𝑋 ∈ ( 𝐾 ‘ 𝐺 ) ↔ ( 𝑋 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑋 ) = 0 ) ) ) |
10 |
6 7 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐾 ‘ 𝐺 ) ↔ ( 𝑋 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑋 ) = 0 ) ) ) |
11 |
8
|
biantrurd |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) = 0 ↔ ( 𝑋 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑋 ) = 0 ) ) ) |
12 |
10 11
|
bitr4d |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐾 ‘ 𝐺 ) ↔ ( 𝐺 ‘ 𝑋 ) = 0 ) ) |