Metamath Proof Explorer


Theorem ellkr2

Description: Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015)

Ref Expression
Hypotheses lkrfval2.v 𝑉 = ( Base ‘ 𝑊 )
lkrfval2.d 𝐷 = ( Scalar ‘ 𝑊 )
lkrfval2.o 0 = ( 0g𝐷 )
lkrfval2.f 𝐹 = ( LFnl ‘ 𝑊 )
lkrfval2.k 𝐾 = ( LKer ‘ 𝑊 )
ellkr2.w ( 𝜑𝑊𝑌 )
ellkr2.g ( 𝜑𝐺𝐹 )
ellkr2.x ( 𝜑𝑋𝑉 )
Assertion ellkr2 ( 𝜑 → ( 𝑋 ∈ ( 𝐾𝐺 ) ↔ ( 𝐺𝑋 ) = 0 ) )

Proof

Step Hyp Ref Expression
1 lkrfval2.v 𝑉 = ( Base ‘ 𝑊 )
2 lkrfval2.d 𝐷 = ( Scalar ‘ 𝑊 )
3 lkrfval2.o 0 = ( 0g𝐷 )
4 lkrfval2.f 𝐹 = ( LFnl ‘ 𝑊 )
5 lkrfval2.k 𝐾 = ( LKer ‘ 𝑊 )
6 ellkr2.w ( 𝜑𝑊𝑌 )
7 ellkr2.g ( 𝜑𝐺𝐹 )
8 ellkr2.x ( 𝜑𝑋𝑉 )
9 1 2 3 4 5 ellkr ( ( 𝑊𝑌𝐺𝐹 ) → ( 𝑋 ∈ ( 𝐾𝐺 ) ↔ ( 𝑋𝑉 ∧ ( 𝐺𝑋 ) = 0 ) ) )
10 6 7 9 syl2anc ( 𝜑 → ( 𝑋 ∈ ( 𝐾𝐺 ) ↔ ( 𝑋𝑉 ∧ ( 𝐺𝑋 ) = 0 ) ) )
11 8 biantrurd ( 𝜑 → ( ( 𝐺𝑋 ) = 0 ↔ ( 𝑋𝑉 ∧ ( 𝐺𝑋 ) = 0 ) ) )
12 10 11 bitr4d ( 𝜑 → ( 𝑋 ∈ ( 𝐾𝐺 ) ↔ ( 𝐺𝑋 ) = 0 ) )