Metamath Proof Explorer


Theorem lkrshpor

Description: The kernel of a functional is either a hyperplane or the full vector space. (Contributed by NM, 7-Oct-2014)

Ref Expression
Hypotheses lkrshpor.v V = Base W
lkrshpor.h H = LSHyp W
lkrshpor.f F = LFnl W
lkrshpor.k K = LKer W
lkrshpor.w φ W LVec
lkrshpor.g φ G F
Assertion lkrshpor φ K G H K G = V

Proof

Step Hyp Ref Expression
1 lkrshpor.v V = Base W
2 lkrshpor.h H = LSHyp W
3 lkrshpor.f F = LFnl W
4 lkrshpor.k K = LKer W
5 lkrshpor.w φ W LVec
6 lkrshpor.g φ G F
7 lveclmod W LVec W LMod
8 5 7 syl φ W LMod
9 eqid Scalar W = Scalar W
10 eqid 0 Scalar W = 0 Scalar W
11 9 10 1 3 4 lkr0f W LMod G F K G = V G = V × 0 Scalar W
12 8 6 11 syl2anc φ K G = V G = V × 0 Scalar W
13 12 biimpar φ G = V × 0 Scalar W K G = V
14 13 olcd φ G = V × 0 Scalar W K G H K G = V
15 5 adantr φ G V × 0 Scalar W W LVec
16 6 adantr φ G V × 0 Scalar W G F
17 simpr φ G V × 0 Scalar W G V × 0 Scalar W
18 1 9 10 2 3 4 lkrshp W LVec G F G V × 0 Scalar W K G H
19 15 16 17 18 syl3anc φ G V × 0 Scalar W K G H
20 19 orcd φ G V × 0 Scalar W K G H K G = V
21 14 20 pm2.61dane φ K G H K G = V