Step |
Hyp |
Ref |
Expression |
1 |
|
lkrshpor.v |
|- V = ( Base ` W ) |
2 |
|
lkrshpor.h |
|- H = ( LSHyp ` W ) |
3 |
|
lkrshpor.f |
|- F = ( LFnl ` W ) |
4 |
|
lkrshpor.k |
|- K = ( LKer ` W ) |
5 |
|
lkrshpor.w |
|- ( ph -> W e. LVec ) |
6 |
|
lkrshpor.g |
|- ( ph -> G e. F ) |
7 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
8 |
5 7
|
syl |
|- ( ph -> W e. LMod ) |
9 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
10 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
11 |
9 10 1 3 4
|
lkr0f |
|- ( ( W e. LMod /\ G e. F ) -> ( ( K ` G ) = V <-> G = ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) ) |
12 |
8 6 11
|
syl2anc |
|- ( ph -> ( ( K ` G ) = V <-> G = ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) ) |
13 |
12
|
biimpar |
|- ( ( ph /\ G = ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) -> ( K ` G ) = V ) |
14 |
13
|
olcd |
|- ( ( ph /\ G = ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) -> ( ( K ` G ) e. H \/ ( K ` G ) = V ) ) |
15 |
5
|
adantr |
|- ( ( ph /\ G =/= ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) -> W e. LVec ) |
16 |
6
|
adantr |
|- ( ( ph /\ G =/= ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) -> G e. F ) |
17 |
|
simpr |
|- ( ( ph /\ G =/= ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) -> G =/= ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) |
18 |
1 9 10 2 3 4
|
lkrshp |
|- ( ( W e. LVec /\ G e. F /\ G =/= ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) -> ( K ` G ) e. H ) |
19 |
15 16 17 18
|
syl3anc |
|- ( ( ph /\ G =/= ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) -> ( K ` G ) e. H ) |
20 |
19
|
orcd |
|- ( ( ph /\ G =/= ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) -> ( ( K ` G ) e. H \/ ( K ` G ) = V ) ) |
21 |
14 20
|
pm2.61dane |
|- ( ph -> ( ( K ` G ) e. H \/ ( K ` G ) = V ) ) |