Metamath Proof Explorer


Theorem lkrshpor

Description: The kernel of a functional is either a hyperplane or the full vector space. (Contributed by NM, 7-Oct-2014)

Ref Expression
Hypotheses lkrshpor.v
|- V = ( Base ` W )
lkrshpor.h
|- H = ( LSHyp ` W )
lkrshpor.f
|- F = ( LFnl ` W )
lkrshpor.k
|- K = ( LKer ` W )
lkrshpor.w
|- ( ph -> W e. LVec )
lkrshpor.g
|- ( ph -> G e. F )
Assertion lkrshpor
|- ( ph -> ( ( K ` G ) e. H \/ ( K ` G ) = V ) )

Proof

Step Hyp Ref Expression
1 lkrshpor.v
 |-  V = ( Base ` W )
2 lkrshpor.h
 |-  H = ( LSHyp ` W )
3 lkrshpor.f
 |-  F = ( LFnl ` W )
4 lkrshpor.k
 |-  K = ( LKer ` W )
5 lkrshpor.w
 |-  ( ph -> W e. LVec )
6 lkrshpor.g
 |-  ( ph -> G e. F )
7 lveclmod
 |-  ( W e. LVec -> W e. LMod )
8 5 7 syl
 |-  ( ph -> W e. LMod )
9 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
10 eqid
 |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) )
11 9 10 1 3 4 lkr0f
 |-  ( ( W e. LMod /\ G e. F ) -> ( ( K ` G ) = V <-> G = ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) )
12 8 6 11 syl2anc
 |-  ( ph -> ( ( K ` G ) = V <-> G = ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) )
13 12 biimpar
 |-  ( ( ph /\ G = ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) -> ( K ` G ) = V )
14 13 olcd
 |-  ( ( ph /\ G = ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) -> ( ( K ` G ) e. H \/ ( K ` G ) = V ) )
15 5 adantr
 |-  ( ( ph /\ G =/= ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) -> W e. LVec )
16 6 adantr
 |-  ( ( ph /\ G =/= ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) -> G e. F )
17 simpr
 |-  ( ( ph /\ G =/= ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) -> G =/= ( V X. { ( 0g ` ( Scalar ` W ) ) } ) )
18 1 9 10 2 3 4 lkrshp
 |-  ( ( W e. LVec /\ G e. F /\ G =/= ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) -> ( K ` G ) e. H )
19 15 16 17 18 syl3anc
 |-  ( ( ph /\ G =/= ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) -> ( K ` G ) e. H )
20 19 orcd
 |-  ( ( ph /\ G =/= ( V X. { ( 0g ` ( Scalar ` W ) ) } ) ) -> ( ( K ` G ) e. H \/ ( K ` G ) = V ) )
21 14 20 pm2.61dane
 |-  ( ph -> ( ( K ` G ) e. H \/ ( K ` G ) = V ) )