| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lkrshp4.v |
|- V = ( Base ` W ) |
| 2 |
|
lkrshp4.h |
|- H = ( LSHyp ` W ) |
| 3 |
|
lkrshp4.f |
|- F = ( LFnl ` W ) |
| 4 |
|
lkrshp4.k |
|- K = ( LKer ` W ) |
| 5 |
|
lkrshp4.w |
|- ( ph -> W e. LVec ) |
| 6 |
|
lkrshp4.g |
|- ( ph -> G e. F ) |
| 7 |
1 2 3 4 5 6
|
lkrshpor |
|- ( ph -> ( ( K ` G ) e. H \/ ( K ` G ) = V ) ) |
| 8 |
7
|
orcomd |
|- ( ph -> ( ( K ` G ) = V \/ ( K ` G ) e. H ) ) |
| 9 |
|
neor |
|- ( ( ( K ` G ) = V \/ ( K ` G ) e. H ) <-> ( ( K ` G ) =/= V -> ( K ` G ) e. H ) ) |
| 10 |
8 9
|
sylib |
|- ( ph -> ( ( K ` G ) =/= V -> ( K ` G ) e. H ) ) |
| 11 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 12 |
5 11
|
syl |
|- ( ph -> W e. LMod ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ ( K ` G ) e. H ) -> W e. LMod ) |
| 14 |
|
simpr |
|- ( ( ph /\ ( K ` G ) e. H ) -> ( K ` G ) e. H ) |
| 15 |
1 2 13 14
|
lshpne |
|- ( ( ph /\ ( K ` G ) e. H ) -> ( K ` G ) =/= V ) |
| 16 |
15
|
ex |
|- ( ph -> ( ( K ` G ) e. H -> ( K ` G ) =/= V ) ) |
| 17 |
10 16
|
impbid |
|- ( ph -> ( ( K ` G ) =/= V <-> ( K ` G ) e. H ) ) |