Step |
Hyp |
Ref |
Expression |
1 |
|
lshpne.v |
|- V = ( Base ` W ) |
2 |
|
lshpne.h |
|- H = ( LSHyp ` W ) |
3 |
|
lshpne.w |
|- ( ph -> W e. LMod ) |
4 |
|
lshpne.u |
|- ( ph -> U e. H ) |
5 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
6 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
7 |
1 5 6 2
|
islshp |
|- ( W e. LMod -> ( U e. H <-> ( U e. ( LSubSp ` W ) /\ U =/= V /\ E. v e. V ( ( LSpan ` W ) ` ( U u. { v } ) ) = V ) ) ) |
8 |
3 7
|
syl |
|- ( ph -> ( U e. H <-> ( U e. ( LSubSp ` W ) /\ U =/= V /\ E. v e. V ( ( LSpan ` W ) ` ( U u. { v } ) ) = V ) ) ) |
9 |
4 8
|
mpbid |
|- ( ph -> ( U e. ( LSubSp ` W ) /\ U =/= V /\ E. v e. V ( ( LSpan ` W ) ` ( U u. { v } ) ) = V ) ) |
10 |
9
|
simp2d |
|- ( ph -> U =/= V ) |