Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Atoms, hyperplanes, and covering in a left vector space (or module)
lshpne
Next ⟩
lshpnel
Metamath Proof Explorer
Ascii
Unicode
Theorem
lshpne
Description:
A hyperplane is not equal to the vector space.
(Contributed by
NM
, 4-Jul-2014)
Ref
Expression
Hypotheses
lshpne.v
⊢
V
=
Base
W
lshpne.h
⊢
H
=
LSHyp
⁡
W
lshpne.w
⊢
φ
→
W
∈
LMod
lshpne.u
⊢
φ
→
U
∈
H
Assertion
lshpne
⊢
φ
→
U
≠
V
Proof
Step
Hyp
Ref
Expression
1
lshpne.v
⊢
V
=
Base
W
2
lshpne.h
⊢
H
=
LSHyp
⁡
W
3
lshpne.w
⊢
φ
→
W
∈
LMod
4
lshpne.u
⊢
φ
→
U
∈
H
5
eqid
⊢
LSpan
⁡
W
=
LSpan
⁡
W
6
eqid
⊢
LSubSp
⁡
W
=
LSubSp
⁡
W
7
1
5
6
2
islshp
⊢
W
∈
LMod
→
U
∈
H
↔
U
∈
LSubSp
⁡
W
∧
U
≠
V
∧
∃
v
∈
V
LSpan
⁡
W
⁡
U
∪
v
=
V
8
3
7
syl
⊢
φ
→
U
∈
H
↔
U
∈
LSubSp
⁡
W
∧
U
≠
V
∧
∃
v
∈
V
LSpan
⁡
W
⁡
U
∪
v
=
V
9
4
8
mpbid
⊢
φ
→
U
∈
LSubSp
⁡
W
∧
U
≠
V
∧
∃
v
∈
V
LSpan
⁡
W
⁡
U
∪
v
=
V
10
9
simp2d
⊢
φ
→
U
≠
V