Metamath Proof Explorer


Theorem lshpnel

Description: A hyperplane's generating vector does not belong to the hyperplane. (Contributed by NM, 3-Jul-2014)

Ref Expression
Hypotheses lshpnel.v V = Base W
lshpnel.n N = LSpan W
lshpnel.p ˙ = LSSum W
lshpnel.h H = LSHyp W
lshpnel.w φ W LMod
lshpnel.u φ U H
lshpnel.x φ X V
lshpnel.e φ U ˙ N X = V
Assertion lshpnel φ ¬ X U

Proof

Step Hyp Ref Expression
1 lshpnel.v V = Base W
2 lshpnel.n N = LSpan W
3 lshpnel.p ˙ = LSSum W
4 lshpnel.h H = LSHyp W
5 lshpnel.w φ W LMod
6 lshpnel.u φ U H
7 lshpnel.x φ X V
8 lshpnel.e φ U ˙ N X = V
9 1 4 5 6 lshpne φ U V
10 5 adantr φ X U W LMod
11 eqid LSubSp W = LSubSp W
12 11 lsssssubg W LMod LSubSp W SubGrp W
13 10 12 syl φ X U LSubSp W SubGrp W
14 11 4 5 6 lshplss φ U LSubSp W
15 14 adantr φ X U U LSubSp W
16 13 15 sseldd φ X U U SubGrp W
17 7 adantr φ X U X V
18 1 11 2 lspsncl W LMod X V N X LSubSp W
19 10 17 18 syl2anc φ X U N X LSubSp W
20 13 19 sseldd φ X U N X SubGrp W
21 simpr φ X U X U
22 11 2 10 15 21 lspsnel5a φ X U N X U
23 3 lsmss2 U SubGrp W N X SubGrp W N X U U ˙ N X = U
24 16 20 22 23 syl3anc φ X U U ˙ N X = U
25 8 adantr φ X U U ˙ N X = V
26 24 25 eqtr3d φ X U U = V
27 26 ex φ X U U = V
28 27 necon3ad φ U V ¬ X U
29 9 28 mpd φ ¬ X U