Metamath Proof Explorer


Theorem lshpnel

Description: A hyperplane's generating vector does not belong to the hyperplane. (Contributed by NM, 3-Jul-2014)

Ref Expression
Hypotheses lshpnel.v V=BaseW
lshpnel.n N=LSpanW
lshpnel.p ˙=LSSumW
lshpnel.h H=LSHypW
lshpnel.w φWLMod
lshpnel.u φUH
lshpnel.x φXV
lshpnel.e φU˙NX=V
Assertion lshpnel φ¬XU

Proof

Step Hyp Ref Expression
1 lshpnel.v V=BaseW
2 lshpnel.n N=LSpanW
3 lshpnel.p ˙=LSSumW
4 lshpnel.h H=LSHypW
5 lshpnel.w φWLMod
6 lshpnel.u φUH
7 lshpnel.x φXV
8 lshpnel.e φU˙NX=V
9 1 4 5 6 lshpne φUV
10 5 adantr φXUWLMod
11 eqid LSubSpW=LSubSpW
12 11 lsssssubg WLModLSubSpWSubGrpW
13 10 12 syl φXULSubSpWSubGrpW
14 11 4 5 6 lshplss φULSubSpW
15 14 adantr φXUULSubSpW
16 13 15 sseldd φXUUSubGrpW
17 7 adantr φXUXV
18 1 11 2 lspsncl WLModXVNXLSubSpW
19 10 17 18 syl2anc φXUNXLSubSpW
20 13 19 sseldd φXUNXSubGrpW
21 simpr φXUXU
22 11 2 10 15 21 lspsnel5a φXUNXU
23 3 lsmss2 USubGrpWNXSubGrpWNXUU˙NX=U
24 16 20 22 23 syl3anc φXUU˙NX=U
25 8 adantr φXUU˙NX=V
26 24 25 eqtr3d φXUU=V
27 26 ex φXUU=V
28 27 necon3ad φUV¬XU
29 9 28 mpd φ¬XU