Metamath Proof Explorer


Theorem lshpnel

Description: A hyperplane's generating vector does not belong to the hyperplane. (Contributed by NM, 3-Jul-2014)

Ref Expression
Hypotheses lshpnel.v
|- V = ( Base ` W )
lshpnel.n
|- N = ( LSpan ` W )
lshpnel.p
|- .(+) = ( LSSum ` W )
lshpnel.h
|- H = ( LSHyp ` W )
lshpnel.w
|- ( ph -> W e. LMod )
lshpnel.u
|- ( ph -> U e. H )
lshpnel.x
|- ( ph -> X e. V )
lshpnel.e
|- ( ph -> ( U .(+) ( N ` { X } ) ) = V )
Assertion lshpnel
|- ( ph -> -. X e. U )

Proof

Step Hyp Ref Expression
1 lshpnel.v
 |-  V = ( Base ` W )
2 lshpnel.n
 |-  N = ( LSpan ` W )
3 lshpnel.p
 |-  .(+) = ( LSSum ` W )
4 lshpnel.h
 |-  H = ( LSHyp ` W )
5 lshpnel.w
 |-  ( ph -> W e. LMod )
6 lshpnel.u
 |-  ( ph -> U e. H )
7 lshpnel.x
 |-  ( ph -> X e. V )
8 lshpnel.e
 |-  ( ph -> ( U .(+) ( N ` { X } ) ) = V )
9 1 4 5 6 lshpne
 |-  ( ph -> U =/= V )
10 5 adantr
 |-  ( ( ph /\ X e. U ) -> W e. LMod )
11 eqid
 |-  ( LSubSp ` W ) = ( LSubSp ` W )
12 11 lsssssubg
 |-  ( W e. LMod -> ( LSubSp ` W ) C_ ( SubGrp ` W ) )
13 10 12 syl
 |-  ( ( ph /\ X e. U ) -> ( LSubSp ` W ) C_ ( SubGrp ` W ) )
14 11 4 5 6 lshplss
 |-  ( ph -> U e. ( LSubSp ` W ) )
15 14 adantr
 |-  ( ( ph /\ X e. U ) -> U e. ( LSubSp ` W ) )
16 13 15 sseldd
 |-  ( ( ph /\ X e. U ) -> U e. ( SubGrp ` W ) )
17 7 adantr
 |-  ( ( ph /\ X e. U ) -> X e. V )
18 1 11 2 lspsncl
 |-  ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` W ) )
19 10 17 18 syl2anc
 |-  ( ( ph /\ X e. U ) -> ( N ` { X } ) e. ( LSubSp ` W ) )
20 13 19 sseldd
 |-  ( ( ph /\ X e. U ) -> ( N ` { X } ) e. ( SubGrp ` W ) )
21 simpr
 |-  ( ( ph /\ X e. U ) -> X e. U )
22 11 2 10 15 21 lspsnel5a
 |-  ( ( ph /\ X e. U ) -> ( N ` { X } ) C_ U )
23 3 lsmss2
 |-  ( ( U e. ( SubGrp ` W ) /\ ( N ` { X } ) e. ( SubGrp ` W ) /\ ( N ` { X } ) C_ U ) -> ( U .(+) ( N ` { X } ) ) = U )
24 16 20 22 23 syl3anc
 |-  ( ( ph /\ X e. U ) -> ( U .(+) ( N ` { X } ) ) = U )
25 8 adantr
 |-  ( ( ph /\ X e. U ) -> ( U .(+) ( N ` { X } ) ) = V )
26 24 25 eqtr3d
 |-  ( ( ph /\ X e. U ) -> U = V )
27 26 ex
 |-  ( ph -> ( X e. U -> U = V ) )
28 27 necon3ad
 |-  ( ph -> ( U =/= V -> -. X e. U ) )
29 9 28 mpd
 |-  ( ph -> -. X e. U )