Step |
Hyp |
Ref |
Expression |
1 |
|
lshpnel.v |
|- V = ( Base ` W ) |
2 |
|
lshpnel.n |
|- N = ( LSpan ` W ) |
3 |
|
lshpnel.p |
|- .(+) = ( LSSum ` W ) |
4 |
|
lshpnel.h |
|- H = ( LSHyp ` W ) |
5 |
|
lshpnel.w |
|- ( ph -> W e. LMod ) |
6 |
|
lshpnel.u |
|- ( ph -> U e. H ) |
7 |
|
lshpnel.x |
|- ( ph -> X e. V ) |
8 |
|
lshpnel.e |
|- ( ph -> ( U .(+) ( N ` { X } ) ) = V ) |
9 |
1 4 5 6
|
lshpne |
|- ( ph -> U =/= V ) |
10 |
5
|
adantr |
|- ( ( ph /\ X e. U ) -> W e. LMod ) |
11 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
12 |
11
|
lsssssubg |
|- ( W e. LMod -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
13 |
10 12
|
syl |
|- ( ( ph /\ X e. U ) -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
14 |
11 4 5 6
|
lshplss |
|- ( ph -> U e. ( LSubSp ` W ) ) |
15 |
14
|
adantr |
|- ( ( ph /\ X e. U ) -> U e. ( LSubSp ` W ) ) |
16 |
13 15
|
sseldd |
|- ( ( ph /\ X e. U ) -> U e. ( SubGrp ` W ) ) |
17 |
7
|
adantr |
|- ( ( ph /\ X e. U ) -> X e. V ) |
18 |
1 11 2
|
lspsncl |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
19 |
10 17 18
|
syl2anc |
|- ( ( ph /\ X e. U ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
20 |
13 19
|
sseldd |
|- ( ( ph /\ X e. U ) -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
21 |
|
simpr |
|- ( ( ph /\ X e. U ) -> X e. U ) |
22 |
11 2 10 15 21
|
lspsnel5a |
|- ( ( ph /\ X e. U ) -> ( N ` { X } ) C_ U ) |
23 |
3
|
lsmss2 |
|- ( ( U e. ( SubGrp ` W ) /\ ( N ` { X } ) e. ( SubGrp ` W ) /\ ( N ` { X } ) C_ U ) -> ( U .(+) ( N ` { X } ) ) = U ) |
24 |
16 20 22 23
|
syl3anc |
|- ( ( ph /\ X e. U ) -> ( U .(+) ( N ` { X } ) ) = U ) |
25 |
8
|
adantr |
|- ( ( ph /\ X e. U ) -> ( U .(+) ( N ` { X } ) ) = V ) |
26 |
24 25
|
eqtr3d |
|- ( ( ph /\ X e. U ) -> U = V ) |
27 |
26
|
ex |
|- ( ph -> ( X e. U -> U = V ) ) |
28 |
27
|
necon3ad |
|- ( ph -> ( U =/= V -> -. X e. U ) ) |
29 |
9 28
|
mpd |
|- ( ph -> -. X e. U ) |