Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Atoms, hyperplanes, and covering in a left vector space (or module)
lshplss
Next ⟩
lshpne
Metamath Proof Explorer
Ascii
Unicode
Theorem
lshplss
Description:
A hyperplane is a subspace.
(Contributed by
NM
, 3-Jul-2014)
Ref
Expression
Hypotheses
lshplss.s
⊢
S
=
LSubSp
⁡
W
lshplss.h
⊢
H
=
LSHyp
⁡
W
lshplss.w
⊢
φ
→
W
∈
LMod
lshplss.u
⊢
φ
→
U
∈
H
Assertion
lshplss
⊢
φ
→
U
∈
S
Proof
Step
Hyp
Ref
Expression
1
lshplss.s
⊢
S
=
LSubSp
⁡
W
2
lshplss.h
⊢
H
=
LSHyp
⁡
W
3
lshplss.w
⊢
φ
→
W
∈
LMod
4
lshplss.u
⊢
φ
→
U
∈
H
5
eqid
⊢
Base
W
=
Base
W
6
eqid
⊢
LSpan
⁡
W
=
LSpan
⁡
W
7
5
6
1
2
islshp
⊢
W
∈
LMod
→
U
∈
H
↔
U
∈
S
∧
U
≠
Base
W
∧
∃
v
∈
Base
W
LSpan
⁡
W
⁡
U
∪
v
=
Base
W
8
3
7
syl
⊢
φ
→
U
∈
H
↔
U
∈
S
∧
U
≠
Base
W
∧
∃
v
∈
Base
W
LSpan
⁡
W
⁡
U
∪
v
=
Base
W
9
4
8
mpbid
⊢
φ
→
U
∈
S
∧
U
≠
Base
W
∧
∃
v
∈
Base
W
LSpan
⁡
W
⁡
U
∪
v
=
Base
W
10
9
simp1d
⊢
φ
→
U
∈
S