Metamath Proof Explorer


Theorem lshplss

Description: A hyperplane is a subspace. (Contributed by NM, 3-Jul-2014)

Ref Expression
Hypotheses lshplss.s S = LSubSp W
lshplss.h H = LSHyp W
lshplss.w φ W LMod
lshplss.u φ U H
Assertion lshplss φ U S

Proof

Step Hyp Ref Expression
1 lshplss.s S = LSubSp W
2 lshplss.h H = LSHyp W
3 lshplss.w φ W LMod
4 lshplss.u φ U H
5 eqid Base W = Base W
6 eqid LSpan W = LSpan W
7 5 6 1 2 islshp W LMod U H U S U Base W v Base W LSpan W U v = Base W
8 3 7 syl φ U H U S U Base W v Base W LSpan W U v = Base W
9 4 8 mpbid φ U S U Base W v Base W LSpan W U v = Base W
10 9 simp1d φ U S