Step |
Hyp |
Ref |
Expression |
1 |
|
lshplss.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
2 |
|
lshplss.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
3 |
|
lshplss.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
4 |
|
lshplss.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐻 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
7 |
5 6 1 2
|
islshp |
⊢ ( 𝑊 ∈ LMod → ( 𝑈 ∈ 𝐻 ↔ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ ( Base ‘ 𝑊 ) ∧ ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑈 ∪ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐻 ↔ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ ( Base ‘ 𝑊 ) ∧ ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑈 ∪ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ) |
9 |
4 8
|
mpbid |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ ( Base ‘ 𝑊 ) ∧ ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑈 ∪ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) |
10 |
9
|
simp1d |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |