| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lshpne.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lshpne.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
| 3 |
|
lshpne.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 4 |
|
lshpne.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐻 ) |
| 5 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 7 |
1 5 6 2
|
islshp |
⊢ ( 𝑊 ∈ LMod → ( 𝑈 ∈ 𝐻 ↔ ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑈 ∪ { 𝑣 } ) ) = 𝑉 ) ) ) |
| 8 |
3 7
|
syl |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐻 ↔ ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑈 ∪ { 𝑣 } ) ) = 𝑉 ) ) ) |
| 9 |
4 8
|
mpbid |
⊢ ( 𝜑 → ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑈 ∪ { 𝑣 } ) ) = 𝑉 ) ) |
| 10 |
9
|
simp2d |
⊢ ( 𝜑 → 𝑈 ≠ 𝑉 ) |