Metamath Proof Explorer


Theorem lkrshp4

Description: A kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014)

Ref Expression
Hypotheses lkrshp4.v V = Base W
lkrshp4.h H = LSHyp W
lkrshp4.f F = LFnl W
lkrshp4.k K = LKer W
lkrshp4.w φ W LVec
lkrshp4.g φ G F
Assertion lkrshp4 φ K G V K G H

Proof

Step Hyp Ref Expression
1 lkrshp4.v V = Base W
2 lkrshp4.h H = LSHyp W
3 lkrshp4.f F = LFnl W
4 lkrshp4.k K = LKer W
5 lkrshp4.w φ W LVec
6 lkrshp4.g φ G F
7 1 2 3 4 5 6 lkrshpor φ K G H K G = V
8 7 orcomd φ K G = V K G H
9 neor K G = V K G H K G V K G H
10 8 9 sylib φ K G V K G H
11 lveclmod W LVec W LMod
12 5 11 syl φ W LMod
13 12 adantr φ K G H W LMod
14 simpr φ K G H K G H
15 1 2 13 14 lshpne φ K G H K G V
16 15 ex φ K G H K G V
17 10 16 impbid φ K G V K G H