Metamath Proof Explorer


Theorem lkrshp4

Description: A kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014)

Ref Expression
Hypotheses lkrshp4.v V=BaseW
lkrshp4.h H=LSHypW
lkrshp4.f F=LFnlW
lkrshp4.k K=LKerW
lkrshp4.w φWLVec
lkrshp4.g φGF
Assertion lkrshp4 φKGVKGH

Proof

Step Hyp Ref Expression
1 lkrshp4.v V=BaseW
2 lkrshp4.h H=LSHypW
3 lkrshp4.f F=LFnlW
4 lkrshp4.k K=LKerW
5 lkrshp4.w φWLVec
6 lkrshp4.g φGF
7 1 2 3 4 5 6 lkrshpor φKGHKG=V
8 7 orcomd φKG=VKGH
9 neor KG=VKGHKGVKGH
10 8 9 sylib φKGVKGH
11 lveclmod WLVecWLMod
12 5 11 syl φWLMod
13 12 adantr φKGHWLMod
14 simpr φKGHKGH
15 1 2 13 14 lshpne φKGHKGV
16 15 ex φKGHKGV
17 10 16 impbid φKGVKGH