Metamath Proof Explorer


Theorem lshpsmreu

Description: Lemma for lshpkrex . Show uniqueness of ring multiplier k when a vector X is broken down into components, one in a hyperplane and the other outside of it . TODO: do we need the cbvrexv for a to c ? (Contributed by NM, 4-Jan-2015)

Ref Expression
Hypotheses lshpsmreu.v V=BaseW
lshpsmreu.a +˙=+W
lshpsmreu.n N=LSpanW
lshpsmreu.p ˙=LSSumW
lshpsmreu.h H=LSHypW
lshpsmreu.w φWLVec
lshpsmreu.u φUH
lshpsmreu.z φZV
lshpsmreu.x φXV
lshpsmreu.e φU˙NZ=V
lshpsmreu.d D=ScalarW
lshpsmreu.k K=BaseD
lshpsmreu.t ·˙=W
Assertion lshpsmreu φ∃!kKyUX=y+˙k·˙Z

Proof

Step Hyp Ref Expression
1 lshpsmreu.v V=BaseW
2 lshpsmreu.a +˙=+W
3 lshpsmreu.n N=LSpanW
4 lshpsmreu.p ˙=LSSumW
5 lshpsmreu.h H=LSHypW
6 lshpsmreu.w φWLVec
7 lshpsmreu.u φUH
8 lshpsmreu.z φZV
9 lshpsmreu.x φXV
10 lshpsmreu.e φU˙NZ=V
11 lshpsmreu.d D=ScalarW
12 lshpsmreu.k K=BaseD
13 lshpsmreu.t ·˙=W
14 9 10 eleqtrrd φXU˙NZ
15 lveclmod WLVecWLMod
16 6 15 syl φWLMod
17 eqid LSubSpW=LSubSpW
18 17 lsssssubg WLModLSubSpWSubGrpW
19 16 18 syl φLSubSpWSubGrpW
20 17 5 16 7 lshplss φULSubSpW
21 19 20 sseldd φUSubGrpW
22 1 17 3 lspsncl WLModZVNZLSubSpW
23 16 8 22 syl2anc φNZLSubSpW
24 19 23 sseldd φNZSubGrpW
25 2 4 lsmelval USubGrpWNZSubGrpWXU˙NZcUzNZX=c+˙z
26 21 24 25 syl2anc φXU˙NZcUzNZX=c+˙z
27 14 26 mpbid φcUzNZX=c+˙z
28 df-rex zNZX=c+˙zzzNZX=c+˙z
29 11 12 1 13 3 lspsnel WLModZVzNZbKz=b·˙Z
30 16 8 29 syl2anc φzNZbKz=b·˙Z
31 30 anbi1d φzNZX=c+˙zbKz=b·˙ZX=c+˙z
32 r19.41v bKz=b·˙ZX=c+˙zbKz=b·˙ZX=c+˙z
33 31 32 bitr4di φzNZX=c+˙zbKz=b·˙ZX=c+˙z
34 33 exbidv φzzNZX=c+˙zzbKz=b·˙ZX=c+˙z
35 rexcom4 bKzz=b·˙ZX=c+˙zzbKz=b·˙ZX=c+˙z
36 ovex b·˙ZV
37 oveq2 z=b·˙Zc+˙z=c+˙b·˙Z
38 37 eqeq2d z=b·˙ZX=c+˙zX=c+˙b·˙Z
39 36 38 ceqsexv zz=b·˙ZX=c+˙zX=c+˙b·˙Z
40 39 rexbii bKzz=b·˙ZX=c+˙zbKX=c+˙b·˙Z
41 35 40 bitr3i zbKz=b·˙ZX=c+˙zbKX=c+˙b·˙Z
42 34 41 bitrdi φzzNZX=c+˙zbKX=c+˙b·˙Z
43 28 42 bitrid φzNZX=c+˙zbKX=c+˙b·˙Z
44 43 rexbidv φcUzNZX=c+˙zcUbKX=c+˙b·˙Z
45 27 44 mpbid φcUbKX=c+˙b·˙Z
46 rexcom cUbKX=c+˙b·˙ZbKcUX=c+˙b·˙Z
47 45 46 sylib φbKcUX=c+˙b·˙Z
48 oveq1 c=ac+˙b·˙Z=a+˙b·˙Z
49 48 eqeq2d c=aX=c+˙b·˙ZX=a+˙b·˙Z
50 49 cbvrexvw cUX=c+˙b·˙ZaUX=a+˙b·˙Z
51 eqid 0W=0W
52 eqid CntzW=CntzW
53 simp11l φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙Zφ
54 53 21 syl φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙ZUSubGrpW
55 53 24 syl φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙ZNZSubGrpW
56 1 51 3 4 5 6 7 8 10 lshpdisj φUNZ=0W
57 53 56 syl φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙ZUNZ=0W
58 53 6 syl φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙ZWLVec
59 58 15 syl φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙ZWLMod
60 lmodabl WLModWAbel
61 59 60 syl φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙ZWAbel
62 52 61 54 55 ablcntzd φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙ZUCntzWNZ
63 simp12 φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙ZaU
64 simp2 φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙ZcU
65 simp1rl φbKlKaUX=a+˙b·˙ZbK
66 65 3ad2ant1 φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙ZbK
67 53 8 syl φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙ZZV
68 1 13 11 12 3 59 66 67 lspsneli φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙Zb·˙ZNZ
69 simp1rr φbKlKaUX=a+˙b·˙ZlK
70 69 3ad2ant1 φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙ZlK
71 1 13 11 12 3 59 70 67 lspsneli φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙Zl·˙ZNZ
72 simp13 φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙ZX=a+˙b·˙Z
73 simp3 φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙ZX=c+˙l·˙Z
74 72 73 eqtr3d φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙Za+˙b·˙Z=c+˙l·˙Z
75 2 51 52 54 55 57 62 63 64 68 71 74 subgdisj2 φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙Zb·˙Z=l·˙Z
76 53 7 syl φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙ZUH
77 53 10 syl φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙ZU˙NZ=V
78 1 3 4 5 51 59 76 67 77 lshpne0 φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙ZZ0W
79 1 13 11 12 51 58 66 70 67 78 lvecvscan2 φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙Zb·˙Z=l·˙Zb=l
80 75 79 mpbid φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙Zb=l
81 80 rexlimdv3a φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙Zb=l
82 81 rexlimdv3a φbKlKaUX=a+˙b·˙ZcUX=c+˙l·˙Zb=l
83 50 82 biimtrid φbKlKcUX=c+˙b·˙ZcUX=c+˙l·˙Zb=l
84 83 impd φbKlKcUX=c+˙b·˙ZcUX=c+˙l·˙Zb=l
85 84 ralrimivva φbKlKcUX=c+˙b·˙ZcUX=c+˙l·˙Zb=l
86 oveq1 b=lb·˙Z=l·˙Z
87 86 oveq2d b=lc+˙b·˙Z=c+˙l·˙Z
88 87 eqeq2d b=lX=c+˙b·˙ZX=c+˙l·˙Z
89 88 rexbidv b=lcUX=c+˙b·˙ZcUX=c+˙l·˙Z
90 89 reu4 ∃!bKcUX=c+˙b·˙ZbKcUX=c+˙b·˙ZbKlKcUX=c+˙b·˙ZcUX=c+˙l·˙Zb=l
91 47 85 90 sylanbrc φ∃!bKcUX=c+˙b·˙Z
92 oveq1 b=kb·˙Z=k·˙Z
93 92 oveq2d b=kc+˙b·˙Z=c+˙k·˙Z
94 93 eqeq2d b=kX=c+˙b·˙ZX=c+˙k·˙Z
95 94 rexbidv b=kcUX=c+˙b·˙ZcUX=c+˙k·˙Z
96 95 cbvreuvw ∃!bKcUX=c+˙b·˙Z∃!kKcUX=c+˙k·˙Z
97 oveq1 c=yc+˙k·˙Z=y+˙k·˙Z
98 97 eqeq2d c=yX=c+˙k·˙ZX=y+˙k·˙Z
99 98 cbvrexvw cUX=c+˙k·˙ZyUX=y+˙k·˙Z
100 99 reubii ∃!kKcUX=c+˙k·˙Z∃!kKyUX=y+˙k·˙Z
101 96 100 bitri ∃!bKcUX=c+˙b·˙Z∃!kKyUX=y+˙k·˙Z
102 91 101 sylib φ∃!kKyUX=y+˙k·˙Z