| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lshpsmreu.v |
|
| 2 |
|
lshpsmreu.a |
|
| 3 |
|
lshpsmreu.n |
|
| 4 |
|
lshpsmreu.p |
|
| 5 |
|
lshpsmreu.h |
|
| 6 |
|
lshpsmreu.w |
|
| 7 |
|
lshpsmreu.u |
|
| 8 |
|
lshpsmreu.z |
|
| 9 |
|
lshpsmreu.x |
|
| 10 |
|
lshpsmreu.e |
|
| 11 |
|
lshpsmreu.d |
|
| 12 |
|
lshpsmreu.k |
|
| 13 |
|
lshpsmreu.t |
|
| 14 |
9 10
|
eleqtrrd |
|
| 15 |
|
lveclmod |
|
| 16 |
6 15
|
syl |
|
| 17 |
|
eqid |
|
| 18 |
17
|
lsssssubg |
|
| 19 |
16 18
|
syl |
|
| 20 |
17 5 16 7
|
lshplss |
|
| 21 |
19 20
|
sseldd |
|
| 22 |
1 17 3
|
lspsncl |
|
| 23 |
16 8 22
|
syl2anc |
|
| 24 |
19 23
|
sseldd |
|
| 25 |
2 4
|
lsmelval |
|
| 26 |
21 24 25
|
syl2anc |
|
| 27 |
14 26
|
mpbid |
|
| 28 |
|
df-rex |
|
| 29 |
11 12 1 13 3
|
ellspsn |
|
| 30 |
16 8 29
|
syl2anc |
|
| 31 |
30
|
anbi1d |
|
| 32 |
|
r19.41v |
|
| 33 |
31 32
|
bitr4di |
|
| 34 |
33
|
exbidv |
|
| 35 |
|
rexcom4 |
|
| 36 |
|
ovex |
|
| 37 |
|
oveq2 |
|
| 38 |
37
|
eqeq2d |
|
| 39 |
36 38
|
ceqsexv |
|
| 40 |
39
|
rexbii |
|
| 41 |
35 40
|
bitr3i |
|
| 42 |
34 41
|
bitrdi |
|
| 43 |
28 42
|
bitrid |
|
| 44 |
43
|
rexbidv |
|
| 45 |
27 44
|
mpbid |
|
| 46 |
|
rexcom |
|
| 47 |
45 46
|
sylib |
|
| 48 |
|
oveq1 |
|
| 49 |
48
|
eqeq2d |
|
| 50 |
49
|
cbvrexvw |
|
| 51 |
|
eqid |
|
| 52 |
|
eqid |
|
| 53 |
|
simp11l |
|
| 54 |
53 21
|
syl |
|
| 55 |
53 24
|
syl |
|
| 56 |
1 51 3 4 5 6 7 8 10
|
lshpdisj |
|
| 57 |
53 56
|
syl |
|
| 58 |
53 6
|
syl |
|
| 59 |
58 15
|
syl |
|
| 60 |
|
lmodabl |
|
| 61 |
59 60
|
syl |
|
| 62 |
52 61 54 55
|
ablcntzd |
|
| 63 |
|
simp12 |
|
| 64 |
|
simp2 |
|
| 65 |
|
simp1rl |
|
| 66 |
65
|
3ad2ant1 |
|
| 67 |
53 8
|
syl |
|
| 68 |
1 13 11 12 3 59 66 67
|
ellspsni |
|
| 69 |
|
simp1rr |
|
| 70 |
69
|
3ad2ant1 |
|
| 71 |
1 13 11 12 3 59 70 67
|
ellspsni |
|
| 72 |
|
simp13 |
|
| 73 |
|
simp3 |
|
| 74 |
72 73
|
eqtr3d |
|
| 75 |
2 51 52 54 55 57 62 63 64 68 71 74
|
subgdisj2 |
|
| 76 |
53 7
|
syl |
|
| 77 |
53 10
|
syl |
|
| 78 |
1 3 4 5 51 59 76 67 77
|
lshpne0 |
|
| 79 |
1 13 11 12 51 58 66 70 67 78
|
lvecvscan2 |
|
| 80 |
75 79
|
mpbid |
|
| 81 |
80
|
rexlimdv3a |
|
| 82 |
81
|
rexlimdv3a |
|
| 83 |
50 82
|
biimtrid |
|
| 84 |
83
|
impd |
|
| 85 |
84
|
ralrimivva |
|
| 86 |
|
oveq1 |
|
| 87 |
86
|
oveq2d |
|
| 88 |
87
|
eqeq2d |
|
| 89 |
88
|
rexbidv |
|
| 90 |
89
|
reu4 |
|
| 91 |
47 85 90
|
sylanbrc |
|
| 92 |
|
oveq1 |
|
| 93 |
92
|
oveq2d |
|
| 94 |
93
|
eqeq2d |
|
| 95 |
94
|
rexbidv |
|
| 96 |
95
|
cbvreuvw |
|
| 97 |
|
oveq1 |
|
| 98 |
97
|
eqeq2d |
|
| 99 |
98
|
cbvrexvw |
|
| 100 |
99
|
reubii |
|
| 101 |
96 100
|
bitri |
|
| 102 |
91 101
|
sylib |
|