| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lshpsmreu.v |
|- V = ( Base ` W ) |
| 2 |
|
lshpsmreu.a |
|- .+ = ( +g ` W ) |
| 3 |
|
lshpsmreu.n |
|- N = ( LSpan ` W ) |
| 4 |
|
lshpsmreu.p |
|- .(+) = ( LSSum ` W ) |
| 5 |
|
lshpsmreu.h |
|- H = ( LSHyp ` W ) |
| 6 |
|
lshpsmreu.w |
|- ( ph -> W e. LVec ) |
| 7 |
|
lshpsmreu.u |
|- ( ph -> U e. H ) |
| 8 |
|
lshpsmreu.z |
|- ( ph -> Z e. V ) |
| 9 |
|
lshpsmreu.x |
|- ( ph -> X e. V ) |
| 10 |
|
lshpsmreu.e |
|- ( ph -> ( U .(+) ( N ` { Z } ) ) = V ) |
| 11 |
|
lshpsmreu.d |
|- D = ( Scalar ` W ) |
| 12 |
|
lshpsmreu.k |
|- K = ( Base ` D ) |
| 13 |
|
lshpsmreu.t |
|- .x. = ( .s ` W ) |
| 14 |
9 10
|
eleqtrrd |
|- ( ph -> X e. ( U .(+) ( N ` { Z } ) ) ) |
| 15 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 16 |
6 15
|
syl |
|- ( ph -> W e. LMod ) |
| 17 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 18 |
17
|
lsssssubg |
|- ( W e. LMod -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
| 19 |
16 18
|
syl |
|- ( ph -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
| 20 |
17 5 16 7
|
lshplss |
|- ( ph -> U e. ( LSubSp ` W ) ) |
| 21 |
19 20
|
sseldd |
|- ( ph -> U e. ( SubGrp ` W ) ) |
| 22 |
1 17 3
|
lspsncl |
|- ( ( W e. LMod /\ Z e. V ) -> ( N ` { Z } ) e. ( LSubSp ` W ) ) |
| 23 |
16 8 22
|
syl2anc |
|- ( ph -> ( N ` { Z } ) e. ( LSubSp ` W ) ) |
| 24 |
19 23
|
sseldd |
|- ( ph -> ( N ` { Z } ) e. ( SubGrp ` W ) ) |
| 25 |
2 4
|
lsmelval |
|- ( ( U e. ( SubGrp ` W ) /\ ( N ` { Z } ) e. ( SubGrp ` W ) ) -> ( X e. ( U .(+) ( N ` { Z } ) ) <-> E. c e. U E. z e. ( N ` { Z } ) X = ( c .+ z ) ) ) |
| 26 |
21 24 25
|
syl2anc |
|- ( ph -> ( X e. ( U .(+) ( N ` { Z } ) ) <-> E. c e. U E. z e. ( N ` { Z } ) X = ( c .+ z ) ) ) |
| 27 |
14 26
|
mpbid |
|- ( ph -> E. c e. U E. z e. ( N ` { Z } ) X = ( c .+ z ) ) |
| 28 |
|
df-rex |
|- ( E. z e. ( N ` { Z } ) X = ( c .+ z ) <-> E. z ( z e. ( N ` { Z } ) /\ X = ( c .+ z ) ) ) |
| 29 |
11 12 1 13 3
|
ellspsn |
|- ( ( W e. LMod /\ Z e. V ) -> ( z e. ( N ` { Z } ) <-> E. b e. K z = ( b .x. Z ) ) ) |
| 30 |
16 8 29
|
syl2anc |
|- ( ph -> ( z e. ( N ` { Z } ) <-> E. b e. K z = ( b .x. Z ) ) ) |
| 31 |
30
|
anbi1d |
|- ( ph -> ( ( z e. ( N ` { Z } ) /\ X = ( c .+ z ) ) <-> ( E. b e. K z = ( b .x. Z ) /\ X = ( c .+ z ) ) ) ) |
| 32 |
|
r19.41v |
|- ( E. b e. K ( z = ( b .x. Z ) /\ X = ( c .+ z ) ) <-> ( E. b e. K z = ( b .x. Z ) /\ X = ( c .+ z ) ) ) |
| 33 |
31 32
|
bitr4di |
|- ( ph -> ( ( z e. ( N ` { Z } ) /\ X = ( c .+ z ) ) <-> E. b e. K ( z = ( b .x. Z ) /\ X = ( c .+ z ) ) ) ) |
| 34 |
33
|
exbidv |
|- ( ph -> ( E. z ( z e. ( N ` { Z } ) /\ X = ( c .+ z ) ) <-> E. z E. b e. K ( z = ( b .x. Z ) /\ X = ( c .+ z ) ) ) ) |
| 35 |
|
rexcom4 |
|- ( E. b e. K E. z ( z = ( b .x. Z ) /\ X = ( c .+ z ) ) <-> E. z E. b e. K ( z = ( b .x. Z ) /\ X = ( c .+ z ) ) ) |
| 36 |
|
ovex |
|- ( b .x. Z ) e. _V |
| 37 |
|
oveq2 |
|- ( z = ( b .x. Z ) -> ( c .+ z ) = ( c .+ ( b .x. Z ) ) ) |
| 38 |
37
|
eqeq2d |
|- ( z = ( b .x. Z ) -> ( X = ( c .+ z ) <-> X = ( c .+ ( b .x. Z ) ) ) ) |
| 39 |
36 38
|
ceqsexv |
|- ( E. z ( z = ( b .x. Z ) /\ X = ( c .+ z ) ) <-> X = ( c .+ ( b .x. Z ) ) ) |
| 40 |
39
|
rexbii |
|- ( E. b e. K E. z ( z = ( b .x. Z ) /\ X = ( c .+ z ) ) <-> E. b e. K X = ( c .+ ( b .x. Z ) ) ) |
| 41 |
35 40
|
bitr3i |
|- ( E. z E. b e. K ( z = ( b .x. Z ) /\ X = ( c .+ z ) ) <-> E. b e. K X = ( c .+ ( b .x. Z ) ) ) |
| 42 |
34 41
|
bitrdi |
|- ( ph -> ( E. z ( z e. ( N ` { Z } ) /\ X = ( c .+ z ) ) <-> E. b e. K X = ( c .+ ( b .x. Z ) ) ) ) |
| 43 |
28 42
|
bitrid |
|- ( ph -> ( E. z e. ( N ` { Z } ) X = ( c .+ z ) <-> E. b e. K X = ( c .+ ( b .x. Z ) ) ) ) |
| 44 |
43
|
rexbidv |
|- ( ph -> ( E. c e. U E. z e. ( N ` { Z } ) X = ( c .+ z ) <-> E. c e. U E. b e. K X = ( c .+ ( b .x. Z ) ) ) ) |
| 45 |
27 44
|
mpbid |
|- ( ph -> E. c e. U E. b e. K X = ( c .+ ( b .x. Z ) ) ) |
| 46 |
|
rexcom |
|- ( E. c e. U E. b e. K X = ( c .+ ( b .x. Z ) ) <-> E. b e. K E. c e. U X = ( c .+ ( b .x. Z ) ) ) |
| 47 |
45 46
|
sylib |
|- ( ph -> E. b e. K E. c e. U X = ( c .+ ( b .x. Z ) ) ) |
| 48 |
|
oveq1 |
|- ( c = a -> ( c .+ ( b .x. Z ) ) = ( a .+ ( b .x. Z ) ) ) |
| 49 |
48
|
eqeq2d |
|- ( c = a -> ( X = ( c .+ ( b .x. Z ) ) <-> X = ( a .+ ( b .x. Z ) ) ) ) |
| 50 |
49
|
cbvrexvw |
|- ( E. c e. U X = ( c .+ ( b .x. Z ) ) <-> E. a e. U X = ( a .+ ( b .x. Z ) ) ) |
| 51 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 52 |
|
eqid |
|- ( Cntz ` W ) = ( Cntz ` W ) |
| 53 |
|
simp11l |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> ph ) |
| 54 |
53 21
|
syl |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> U e. ( SubGrp ` W ) ) |
| 55 |
53 24
|
syl |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> ( N ` { Z } ) e. ( SubGrp ` W ) ) |
| 56 |
1 51 3 4 5 6 7 8 10
|
lshpdisj |
|- ( ph -> ( U i^i ( N ` { Z } ) ) = { ( 0g ` W ) } ) |
| 57 |
53 56
|
syl |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> ( U i^i ( N ` { Z } ) ) = { ( 0g ` W ) } ) |
| 58 |
53 6
|
syl |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> W e. LVec ) |
| 59 |
58 15
|
syl |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> W e. LMod ) |
| 60 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
| 61 |
59 60
|
syl |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> W e. Abel ) |
| 62 |
52 61 54 55
|
ablcntzd |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> U C_ ( ( Cntz ` W ) ` ( N ` { Z } ) ) ) |
| 63 |
|
simp12 |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> a e. U ) |
| 64 |
|
simp2 |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> c e. U ) |
| 65 |
|
simp1rl |
|- ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) -> b e. K ) |
| 66 |
65
|
3ad2ant1 |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> b e. K ) |
| 67 |
53 8
|
syl |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> Z e. V ) |
| 68 |
1 13 11 12 3 59 66 67
|
ellspsni |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> ( b .x. Z ) e. ( N ` { Z } ) ) |
| 69 |
|
simp1rr |
|- ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) -> l e. K ) |
| 70 |
69
|
3ad2ant1 |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> l e. K ) |
| 71 |
1 13 11 12 3 59 70 67
|
ellspsni |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> ( l .x. Z ) e. ( N ` { Z } ) ) |
| 72 |
|
simp13 |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> X = ( a .+ ( b .x. Z ) ) ) |
| 73 |
|
simp3 |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> X = ( c .+ ( l .x. Z ) ) ) |
| 74 |
72 73
|
eqtr3d |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> ( a .+ ( b .x. Z ) ) = ( c .+ ( l .x. Z ) ) ) |
| 75 |
2 51 52 54 55 57 62 63 64 68 71 74
|
subgdisj2 |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> ( b .x. Z ) = ( l .x. Z ) ) |
| 76 |
53 7
|
syl |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> U e. H ) |
| 77 |
53 10
|
syl |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> ( U .(+) ( N ` { Z } ) ) = V ) |
| 78 |
1 3 4 5 51 59 76 67 77
|
lshpne0 |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> Z =/= ( 0g ` W ) ) |
| 79 |
1 13 11 12 51 58 66 70 67 78
|
lvecvscan2 |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> ( ( b .x. Z ) = ( l .x. Z ) <-> b = l ) ) |
| 80 |
75 79
|
mpbid |
|- ( ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) /\ c e. U /\ X = ( c .+ ( l .x. Z ) ) ) -> b = l ) |
| 81 |
80
|
rexlimdv3a |
|- ( ( ( ph /\ ( b e. K /\ l e. K ) ) /\ a e. U /\ X = ( a .+ ( b .x. Z ) ) ) -> ( E. c e. U X = ( c .+ ( l .x. Z ) ) -> b = l ) ) |
| 82 |
81
|
rexlimdv3a |
|- ( ( ph /\ ( b e. K /\ l e. K ) ) -> ( E. a e. U X = ( a .+ ( b .x. Z ) ) -> ( E. c e. U X = ( c .+ ( l .x. Z ) ) -> b = l ) ) ) |
| 83 |
50 82
|
biimtrid |
|- ( ( ph /\ ( b e. K /\ l e. K ) ) -> ( E. c e. U X = ( c .+ ( b .x. Z ) ) -> ( E. c e. U X = ( c .+ ( l .x. Z ) ) -> b = l ) ) ) |
| 84 |
83
|
impd |
|- ( ( ph /\ ( b e. K /\ l e. K ) ) -> ( ( E. c e. U X = ( c .+ ( b .x. Z ) ) /\ E. c e. U X = ( c .+ ( l .x. Z ) ) ) -> b = l ) ) |
| 85 |
84
|
ralrimivva |
|- ( ph -> A. b e. K A. l e. K ( ( E. c e. U X = ( c .+ ( b .x. Z ) ) /\ E. c e. U X = ( c .+ ( l .x. Z ) ) ) -> b = l ) ) |
| 86 |
|
oveq1 |
|- ( b = l -> ( b .x. Z ) = ( l .x. Z ) ) |
| 87 |
86
|
oveq2d |
|- ( b = l -> ( c .+ ( b .x. Z ) ) = ( c .+ ( l .x. Z ) ) ) |
| 88 |
87
|
eqeq2d |
|- ( b = l -> ( X = ( c .+ ( b .x. Z ) ) <-> X = ( c .+ ( l .x. Z ) ) ) ) |
| 89 |
88
|
rexbidv |
|- ( b = l -> ( E. c e. U X = ( c .+ ( b .x. Z ) ) <-> E. c e. U X = ( c .+ ( l .x. Z ) ) ) ) |
| 90 |
89
|
reu4 |
|- ( E! b e. K E. c e. U X = ( c .+ ( b .x. Z ) ) <-> ( E. b e. K E. c e. U X = ( c .+ ( b .x. Z ) ) /\ A. b e. K A. l e. K ( ( E. c e. U X = ( c .+ ( b .x. Z ) ) /\ E. c e. U X = ( c .+ ( l .x. Z ) ) ) -> b = l ) ) ) |
| 91 |
47 85 90
|
sylanbrc |
|- ( ph -> E! b e. K E. c e. U X = ( c .+ ( b .x. Z ) ) ) |
| 92 |
|
oveq1 |
|- ( b = k -> ( b .x. Z ) = ( k .x. Z ) ) |
| 93 |
92
|
oveq2d |
|- ( b = k -> ( c .+ ( b .x. Z ) ) = ( c .+ ( k .x. Z ) ) ) |
| 94 |
93
|
eqeq2d |
|- ( b = k -> ( X = ( c .+ ( b .x. Z ) ) <-> X = ( c .+ ( k .x. Z ) ) ) ) |
| 95 |
94
|
rexbidv |
|- ( b = k -> ( E. c e. U X = ( c .+ ( b .x. Z ) ) <-> E. c e. U X = ( c .+ ( k .x. Z ) ) ) ) |
| 96 |
95
|
cbvreuvw |
|- ( E! b e. K E. c e. U X = ( c .+ ( b .x. Z ) ) <-> E! k e. K E. c e. U X = ( c .+ ( k .x. Z ) ) ) |
| 97 |
|
oveq1 |
|- ( c = y -> ( c .+ ( k .x. Z ) ) = ( y .+ ( k .x. Z ) ) ) |
| 98 |
97
|
eqeq2d |
|- ( c = y -> ( X = ( c .+ ( k .x. Z ) ) <-> X = ( y .+ ( k .x. Z ) ) ) ) |
| 99 |
98
|
cbvrexvw |
|- ( E. c e. U X = ( c .+ ( k .x. Z ) ) <-> E. y e. U X = ( y .+ ( k .x. Z ) ) ) |
| 100 |
99
|
reubii |
|- ( E! k e. K E. c e. U X = ( c .+ ( k .x. Z ) ) <-> E! k e. K E. y e. U X = ( y .+ ( k .x. Z ) ) ) |
| 101 |
96 100
|
bitri |
|- ( E! b e. K E. c e. U X = ( c .+ ( b .x. Z ) ) <-> E! k e. K E. y e. U X = ( y .+ ( k .x. Z ) ) ) |
| 102 |
91 101
|
sylib |
|- ( ph -> E! k e. K E. y e. U X = ( y .+ ( k .x. Z ) ) ) |