Step |
Hyp |
Ref |
Expression |
1 |
|
lspsn.f |
|- F = ( Scalar ` W ) |
2 |
|
lspsn.k |
|- K = ( Base ` F ) |
3 |
|
lspsn.v |
|- V = ( Base ` W ) |
4 |
|
lspsn.t |
|- .x. = ( .s ` W ) |
5 |
|
lspsn.n |
|- N = ( LSpan ` W ) |
6 |
1 2 3 4 5
|
lspsn |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) = { v | E. k e. K v = ( k .x. X ) } ) |
7 |
6
|
eleq2d |
|- ( ( W e. LMod /\ X e. V ) -> ( U e. ( N ` { X } ) <-> U e. { v | E. k e. K v = ( k .x. X ) } ) ) |
8 |
|
id |
|- ( U = ( k .x. X ) -> U = ( k .x. X ) ) |
9 |
|
ovex |
|- ( k .x. X ) e. _V |
10 |
8 9
|
eqeltrdi |
|- ( U = ( k .x. X ) -> U e. _V ) |
11 |
10
|
rexlimivw |
|- ( E. k e. K U = ( k .x. X ) -> U e. _V ) |
12 |
|
eqeq1 |
|- ( v = U -> ( v = ( k .x. X ) <-> U = ( k .x. X ) ) ) |
13 |
12
|
rexbidv |
|- ( v = U -> ( E. k e. K v = ( k .x. X ) <-> E. k e. K U = ( k .x. X ) ) ) |
14 |
11 13
|
elab3 |
|- ( U e. { v | E. k e. K v = ( k .x. X ) } <-> E. k e. K U = ( k .x. X ) ) |
15 |
7 14
|
bitrdi |
|- ( ( W e. LMod /\ X e. V ) -> ( U e. ( N ` { X } ) <-> E. k e. K U = ( k .x. X ) ) ) |